Abstract

Research Article

Autoimmune hemolytic anemia in COVID-19 patients, the « transmissible » direct Coombs test

Alice Brochier*, Julien Cabo, Claudine Guerrieri, Leïla Belkhir, Pierre-François Laterre and Véronique Deneys*

Published: 07 April, 2021 | Volume 5 - Issue 1 | Pages: 004-008

Background: Like other viruses, the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) appears to be responsible for several autoimmune complications. The occurrence of autoimmune hemolytic anemia has been described in several case reports. This AIHA was also noticeable by the important number of blood transfusions required for COVID-19 (coronavirus disease 2019) patients. By investigating RBC coating autoantibodies, this article attempts to clarify the autoimmune aspect of the anemia in the context of SARS-CoV-2 infection.

Results: A large population of COVID-19 patients selected at Saint-Luc University Hospital showed an average of 44% DAT positivity. In this population, the intensive care patients were more prone to DAT positivity than the general ward patients (statistically significant result). The positive DAT appeared « transmissible » to other RBCs via COVID-19 DAT-positive patient’s plasma.

Conclusion: The strongest hypothesis explaining this observation is the targeting of cryptic antigens by autoantibodies in COVID-19 patients.

Read Full Article HTML DOI: 10.29328/journal.jhcr.1001016 Cite this Article Read Full Article PDF

Keywords:

Direct antiglobulin test; Erythrocyte cryptic antigens; COVID-19

References

  1. Coombs RR, Mourant AE, Race RR. A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol. 1945; 26: 255-266. PubMed: https://pubmed.ncbi.nlm.nih.gov/21006651/
  2. Zantek ND, Koepsell SA, Tharp DR, Jr., Cohn CS. The direct antiglobulin test: a critical step in the evaluation of hemolysis. Am J Hematol. 2012; 87: 707-709. PubMed: https://pubmed.ncbi.nlm.nih.gov/22566278/
  3. Jäger U, Barcellini W, Broome CM, Gertz MA, Hill A, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020; 41: 100648. PubMed: https://pubmed.ncbi.nlm.nih.gov/31839434/
  4. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, et al. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017; 176: 395-411. PubMed: https://pubmed.ncbi.nlm.nih.gov/28005293/
  5. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, et al. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing. 2020; 17: 38. PubMed: https://pubmed.ncbi.nlm.nih.gov/33292368/
  6. Algassim AA, Elghazaly AA, Alnahdi AS, Mohammed-Rahim OM, Alanazi AG, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol. 2021; 100: 37-43. PubMed: https://pubmed.ncbi.nlm.nih.gov/32918594/
  7. Hannon JL. Management of blood donors and blood donations from individuals found to have a positive direct antiglobulin test. Transfus Med Rev. 2012; 26: 142-152. PubMed: https://pubmed.ncbi.nlm.nih.gov/22000666/
  8. Parker V, Tormey CA. The Direct Antiglobulin Test: Indications, Interpretation, and Pitfalls. Arch Pathol Lab Med. 2017; 141: 305-310. PubMed: https://pubmed.ncbi.nlm.nih.gov/28134589/
  9. Freedman J. False-positive antiglobulin tests in healthy subjects and in hospital patients. J Clin Pathol. 1979; 32: 1014-1018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1145883/
  10. Gehrs BC, Friedberg RC. Autoimmune hemolytic anemia. Am J Hematol. 2002; 69: 258-271. PubMed: https://pubmed.ncbi.nlm.nih.gov/11921020/
  11. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated with autoimmune hemolytic anemia. Ann Hematol. 2020; 99: 1679-1680. PubMed: https://pubmed.ncbi.nlm.nih.gov/32542444/
  12. Lazarian G, Quinquenel A, Bellal M, Siavellis J, Jacquy C, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020; 190: 29-31. PubMed: https://pubmed.ncbi.nlm.nih.gov/32374906/
  13. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190: 31-32. PubMed: https://pubmed.ncbi.nlm.nih.gov/32369626/
  14. Rosenzweig JD, McThenia SS, Kaicker S. SARS-CoV-2 infection in two pediatric patients with immune cytopenias: A single institution experience during the pandemic. Pediatr Blood Cancer. 2020; 67: e28503. PubMed: https://pubmed.ncbi.nlm.nih.gov/32564495/
  15. Zagorski E, Pawar T, Rahimian S, Forman D. Cold agglutinin autoimmune haemolytic anaemia associated with novel coronavirus (COVID-19). Br J Haematol. 2020; 190: e183-e184. PubMed: https://pubmed.ncbi.nlm.nih.gov/32460350/
  16. Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med. 2020; 382: e43. PubMed: https://pubmed.ncbi.nlm.nih.gov/32294340/
  17. Li M, Nguyen CB, Yeung Z, Sanchez K, Rosen D, Bushan S. Evans syndrome in a patient with COVID-19. Br J Haematol. 2020; 190: e59-e61. PubMed: https://pubmed.ncbi.nlm.nih.gov/32420629/
  18. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020; 370: 4585. PubMed: https://pubmed.ncbi.nlm.nih.gov/32972996/
  19. Cid J, Nogués N, Montero R, Hurtado M, Briega A, et al. Comparison of three microtube column agglutination systems for antibody screening: DG Gel, DiaMed-ID and Ortho BioVue. Transfus Med. 2006; 16: 131-136. PubMed: https://pubmed.ncbi.nlm.nih.gov/16623919/
  20. Sokol RJ, Hewitt S, Stamps BK. Autoimmune haemolysis: an 18-year study of 865 cases referred to a regional transfusion centre. Br Med J (Clin Res Ed). 1981; 282: 2023-2027. PubMed: https://pubmed.ncbi.nlm.nih.gov/6788179/
  21. Berzuini A, Bianco C, Paccapelo C, Bertolini F, Gregato G, Cattaneo A, et al. Red cell-bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020; 136: 766-768. PubMed: https://pubmed.ncbi.nlm.nih.gov/32559762/
  22. Lanzavecchia A. How can cryptic epitopes trigger autoimmunity? J Exp Med. 1995; 181: 1945-1948. PubMed: https://pubmed.ncbi.nlm.nih.gov/7539032/
  23. Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992; 358: 155-157. PubMed: https://pubmed.ncbi.nlm.nih.gov/1377368/
  24. Prasad S, Starck SR, Shastri N. Presentation of Cryptic Peptides by MHC Class I Is Enhanced by Inflammatory Stimuli. J Immunol. 2016; 197: 2981-2991. PubMed: https://pubmed.ncbi.nlm.nih.gov/27647836/
  25. Fagiolo E, Toriani-Terenzi C. Mechanisms of immunological tolerance loss versus erythrocyte self-antigens and autoimmune hemolytic anemia. Autoimmunity. 2003; 36: 199-204. PubMed: https://pubmed.ncbi.nlm.nih.gov/14563012/
  26. Seitz RC, Poschmann A, Hellwege HH. Monoclonal antibodies for the detection of desialylation of erythrocyte membranes during haemolytic disease and haemolytic uraemic syndrome caused by the in vivo action of microbial neuraminidase. Glycoconj J. 1997; 14: 699-706. PubMed: https://pubmed.ncbi.nlm.nih.gov/9337082/
  27. Taglietti F, Drapeau CM, Grilli E, Capone A, Noto P, et al. Hemolytic anemia due to acute cytomegalovirus infection in an immunocompetent adult: a case report and review of the literature. J Med Case Rep. 2010; 4: 334. PubMed: https://pubmed.ncbi.nlm.nih.gov/20964811/
  28. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020; 190: e92-e93. PubMed: https://pubmed.ncbi.nlm.nih.gov/32453861/
  29. Rank G, Sutton R, Marshall V, Lundie RJ, Caddy J, et al. Novel roles for erythroid Ankyrin-1 revealed through an ENU-induced null mouse mutant. Blood. 2009; 113: 3352-3362. PubMed: https://pubmed.ncbi.nlm.nih.gov/19179303/

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

  • Orofacial manifestations of COVID-19
    Hariharan Ramakrishnan* and Maniamuthu Ragupathi Hariharan Ramakrishnan*,Maniamuthu Ragupathi. Orofacial manifestations of COVID-19 . J Oral Health Craniofac Sci. 2021: doi: 10.29328/journal.johcs.1001034; 6: 006-007
  • Approaching Mental Health Through a Preventive Data Analysis Platform
    Gabriel F Pestana and Olga Valentim* Gabriel F Pestana, Olga Valentim*. Approaching Mental Health Through a Preventive Data Analysis Platform. Arch Psychiatr Ment Health. 2024: doi: 10.29328/journal.apmh.1001052; 8: 020-027
  • Second Stage of Labor Cesarean Section Maternal and Fetal Outcomes
    Ahazeej Gurashi, Ameer Osman, Hajar Suliman, Ayat Eltigani, Isra Siralkatim, Hamza Orfali and Awadalla Abdelwahid Suliman* Ahazeej Gurashi, Ameer Osman, Hajar Suliman, Ayat Eltigani, Isra Siralkatim, Hamza Orfali, Awadalla Abdelwahid Suliman*. Second Stage of Labor Cesarean Section Maternal and Fetal Outcomes. Clin J Obstet Gynecol. 2024: doi: 10.29328/journal.cjog.1001159; 7: 025-033
  • Surgical and Delivery Outcomes of Coexisting Uterine Fibroids with Pregnancies in Nigeria
    Ade-Ojo Idowu Pius* and Odetola Amoo A Ade-Ojo Idowu Pius*, Odetola Amoo A. Surgical and Delivery Outcomes of Coexisting Uterine Fibroids with Pregnancies in Nigeria. Clin J Obstet Gynecol. 2024: doi: 10.29328/journal.cjog.1001161; 7: 037-041
  • Endometriosis as a risk factor for colorectal cancer
    Víctor Manuel Vargas-Hernández*, José María Tovar- Rodríguez and Víctor Manuel Vargas-Aguilar Víctor Manuel Vargas-Hernández*,José María Tovar- Rodríguez,Víctor Manuel Vargas-Aguilar . Endometriosis as a risk factor for colorectal cancer. Clin J Obstet Gynecol. 2020: doi: 10.29328/journal.cjog.1001057; 3: 093-097

Read More

Most Viewed

Read More

Help ?