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Varicella zoster virus (VZV), a double-stranded DNA vi-
rus, is a highly contagious human neurotropic virus that be-
longs to the alpha group of herpes viruses [1-4]. Primary VZV 
infection (chickenpox) occurs in childhood then the virus 
becomes latent in the nerve ganglia [1,5-7]. Reactivation of 
the virus may occur decades later and cause herpes zoster 
(HZ) which is manifested by a typical painful skin eruption 
that has characteristic dermatomal distribution [1,5]. Reac-
tivation of VZV is usually predisposed to: old age; comorbid 
medical conditions such as diabetes mellitus, chronic ob-
structive airway disease, and end-stage renal disease; and 
immunosuppression due to malignancy, autoimmune disor-
ders, immunosuppressive therapies, trauma, cytotoxic che-
motherapy, hematopoietic stem cell transplantation (HSCT), 
and solid organ transplantation (SOT) [1,5-7].

VZV infections can cause not only transient pancytopenia 
but also aplastic anemia that may require allogeneic HSCT 
[8-12]. Additionally, VZV infections have been reported to 
be associated with increased risk of developing lymphoid 
malignancies and solid tumors [13-17]. On the contrary, 
there is growing evidence showing certain bene icial effects 
of the virus in immunocompromised individuals and these 
effects may be translated into prolongation of overall survival 
(OS) [18,19]. In a single center, case-controlled, retrospective 
study that included 16 episodes of VZV infections occurring 
in 14 patients with various types of hematologic malignancies 
(HMs) and bone marrow (BM) failure syndromes, Al-
Anazi KA et al., reported an increase in white blood cell 
count, hemoglobin (Hb) level, and platelet count starting 
approximately 6 weeks following VZV infections and this 
stimulation of the 3 hematopoietic cell lines in the BM that 
followed VZV infections was maintained for periods longer 
than 3 years following the infection [18]. In another single 
center retrospective study that included a large number 
of patients with multiple myeloma subjected to high-dose 
melphalan followed by autologous HSCT after control of their 

primary disease, Kamber C et al., reported that approximately 
one third of these patients developed VZV infections either 
before or after HSCT [19]. Despite encountering VZV 
infections in patients with worse expected prognosis, the OS 
in patients who developed VZV infection was superior to that 
in patients who never developed the infection [19]. Recently, 
Al-Anazi KA et al., reported BM biopsy-proven reversal of 
pure red cell aplasia manifested by a gradual increase in 
Hb level starting 6 weeks following a localized HZ infection 
till the Hb level plateaued above 14g/dL fourteen months 
following the viral infection [4]. Additionally, several studies 
have demonstrated that VZV infection may trigger chronic 
graft versus host disease (GVHD) following allogeneic HSCT 
[20-22]. GVHD is associated with graft versus cancer effects 
and, provided GVHD is of low-grade, it can be associated 
with improvement in OS in patients with acute leukemia or 
lymphoma [23-25].

Although viruses can cause infectious complications that 
may be associated with signi icant morbidity and mortality 
and evolution of certain cancers, they may provide hope to 
effectively treat several serious medical illnesses by being 
utilized as: vaccines; anticancer agents in the setting of onco-
lytic virus therapy; as well as vectors in induced pluripotent 
stem cells, gene therapy for several hereditary and acquired 
disorders, and chimeric antigen receptor (CAR) T-cell ther-
apy [26-33]. VZV is the only virus consistently reported to 
have an inverse association with glioma suggesting a protec-
tive effect of VZV infection against the tumor [34,35]. Studies 
have shown that: the protective effect of prior VZV infection 
against glioma is stronger for high-grade tumor; this protec-
tive effect may be mediated by the VZV-speci ic T-lympho-
cytes; VZV exhibits an extrinsic oncolytic potential in malig-
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nant glioma cultures; and human mesenchymal stem cells 
(MSCs) are suitable for delivering VZV to the sites of tumor 
growth [34,36,37]. However, ef icacy of oncolytic virothera-
py in malignant glioma has several dif iculties that need to be 
overcome [35].

VZV pathogenesis, latency, and reactivation are dif icult to 
study due to the fact that VZV is an exclusively human patho-
gen [38-40]. Numerous efforts have been made to develop 
adequate animal models of VZV infection but these models 
remain limited because all aspects of VZV infection, latency 
and reactivation, and understanding VZV pathology will re-
main not only dif icult but also incomplete without a suitable 
model [38,40]. Despite the rare reports of breakthrough VZV 
infections that may become disseminated and life-threat-
ening particularly in immunocompromised hosts, VZV vac-
cines including the live-attenuated ones have been shown to 
be generally safe and effective in: recipients of SOT as well 
as HSCT; patients with HMs and solid tumors; patients with 
diabetes mellitus, autoimmune disorders and renal disease; 
elderly individuals on corticosteroid maintenance therapy; 
and patients with history of HZ infection [41-55].

VZV infections are associated with speci ic alterations 
in the BM microenvironment induced by stress-related he-
matopoiesis [56-58]. Studies have shown that the following 
stromal and immune cells are involved the pathogenesis of 
VZV: (1) MSCs, the masters of hematopoiesis, which have an-
timicrobial and anticancer effects [59-62]; (2) dendritic cells, 
the essential cells for initiating antiviral immune response, 
which are found to transmit VZV to T-cells in order for the vi-
rus to disrupt the function of immune cells [63,64]; (3) natu-
ral killer cells, which play important roles in controlling VZV 
infection and eliminating malignant cells, may themselves 
become manipulated by the virus for its advantage [65,66]; 
(4) T-lymphocytes, including CD4, CD8 effector cells and 
memory T cells, that are involved in T cell immunity encoun-
tered following primary VZV infection and in maintenance of 
latency [67]; and (5) mononuclear cells, which once infected 
with VZV, dessiminate the virus to distal organs to produce 
clinical disease [68]. Additionally, the following cellular pro-
teins are involved in the pathogenesis of VZV infections: open 
reading frames, glycoproteins, promyelocytic leukemia pro-
tein, chaperons and small ubiquitin-like modi ier proteins 
[69-73]. Extracellular vesicles, exosomes, and micro-RNAS 
are also implicated in VZV infections [74-76]. Studies have 
also shown that several cytokines, chemokines and ligands 
are involved in VZV infections and that certain complications 
of VZV infections such as: postherpetic neuralgia, vasculopa-
thy, myelopathy, encephalopathy, and acute retinal necrosis 
have speci ic cytokine pro iles [77-81]. A number of signal-
ing pathways; such as Janus kinase/signal transducer and 
activator of transcription proteins (JAK/STAT), extracellular 
signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), 
and PI3K/Akt pathways; have been found to be activated in 
VZV infections [82-85].

Apparently, VZV behaves differently from other herpes 
viruses. Additionally, it has the following peculiar features: 
(1) having the smallest genome; (2) losing almost all the 
genes that are not essential for its survival; (3) being highly 
fusogenic and cell-associated; (4) having no inhibitors 
of autophagy; (5) being an exclusively human pathogen; 
(6) having a species-speci ic cytokine pro ile; (7) having 
an inverse relationship with glioma; (8) association with 
GVHD in recipients with allogeneic HSCT; and (9) having 
BM stimulatory effects as well as several antitumor actions 
in patients with HMs and BM failure syndromes [1-4,18-
22,34,35,86,87].

The reported bene icial effects may develop through 
several direct or indirect immunological mechanisms. 
Hence, these bene icial effects merit thorough investigations 
and should encourage scientists and researchers to give 
this potentially useful virus the attention it deserves. The 
antitumor effects as well as the stimulatory effect exerted 
by the virus on the 3 cell lines in the BM can be explained 
by one or more of the suggested mechanisms or may be due 
to a new mechanism yet to be elucidated. The virus itself, 
modi ied or engineered versions of the virus, or speci ic 
materials obtained from the serum of patients infected with 
VZV may ultimately become novel therapeutic modalities in 
the management of these immunocompromised patients.
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