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Abstract 

Varicella zoster virus behaves differently from other herpes viruses as it differs from them in 
many aspects. Recently, there has been growing evidence on the benefi cial effects of the virus in 
immune compromised hosts and these effects are translated into prolongation of survival. The 
reported benefi cial effects of the virus include: (1) stimulation of bone marrow activity in patients 
with hematologic malignancies and bone marrow failure syndromes, (2) antitumor effects in 
various hematologic malignancies and solid tumors, and (3) association with graft versus host 
disease which has anticancer effects. Additionally, there are several reports on the safety of 
the live-attenuated even in severely immune suppressed individuals and on the emerging role 
of the virus in cancer immunotherapy. In this review, the following aspects of the virus will be 
thoroughly discussed: (1) new data on the genetic background, pathogenesis, vaccination, and 
new therapeutic modalities; (2) bone marrow microenvironment and hematopoiesis; (3) cells 
involved in the pathogenesis of the virus such as: mesenchymal stem cells, dendritic cells, natural 
killer cells, T-cells and mononuclear cells; (4) cellular proteins such as open reading frames, 
glycoproteins, promyelocytic leukemia protein, chaperons, and SUMOs; (5) extracellular vesicles, 
exosomes, and micro-RNAs; and (6) signaling pathways, cytokines, and interferons.
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The reported benefi cial effects of varicella zoster virus

The positive effects of the virus on marrow function 
and malignancies; In a single center, retrospective case-
controlled study that included 16 episodes of varicella zoster 
virus (VZV) infection occurring in 14 patients with various 
types of hematologic malignancies (HMs) and bone marrow 
(BM) failure syndromes subjected to various forms of 
immunosuppressive therapies, cytotoxic chemotherapy and 
hematopoietic stem cell transplantation (HSCT), Al-Anazi KA, 
et al. reported an increase in the 3 components of blood [white 
blood cell (WBC) count, hemoglobin (Hb) level, and platelet 
(PLT) count] starting approximately 6 weeks following VZV 
infection [1]. This stimulation of the 3 hematopoietic cell 
lines in the BM that followed VZV infection was maintained 
for periods longer than 3 years post-VZV infection. The 
study clearly showed that VZV behaves differently from 
other members of the herpes group of viruses such as 
cytomegalovirus (CMV) and Epstein-Barr virus (EBV) and 
that VZV can cause stimulation of BM activity starting 6 weeks 

after VZV infection and lasting for several years thereafter 
[1]. Al-Anazi KA, et al. postulated that immunological changes 
induced by VZV infection particularly cytokine release could 
be responsible for the stimulation of BM activity by VZV 
infection [1]. In another single center retrospective study 
that included 191 patients with multiple myeloma (MM) 
treated initially with cytotoxic chemotherapy, bortezomib-
based or thalidomide-based therapy then subjected to high-
dose melphalan followed by autologous HSCT, Kamber C, 
et al. reported that approximately 30% of these patients 
developed VZV infections either before or after (HSCT) 
[2]. VZV infections were encountered more frequently in 
patients with advanced stage of the disease, renal failure and 
relapsing MM [2]. Despite encountering VZV infections in 
patients with worse expected prognosis, the overall survival 
(OS) in patients who developed VZV infection was superior 
to that in patients who never developed the infection. 
Additionally, there was no delay in neutrophil recovery post-
HSCT in patients infected with VZV and PLT count recovery 
post-HSCT occurred earlier in patients infected with VZV [2]. 
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Recently, Al-Anazi KA, et al. reported reversal of pure 
red cell aplasia (PRCA) by VZV infection [3]. A patient 
with BM biopsy proven PRCA was initially treated with 
immunosuppressive therapy, but this treatment was 
discontinued due to intolerance reported by the patient. Two 
months after stopping cyclosporine-A and prednisolone, the 
patient developed localized herpes zoster (HZ) infection 
that was successfully treated with valaciclovir [3]. Six weeks 
after the VZV infection, Hb level started to increase gradually 
till the patient became packed red blood cell transfusion 
independent few months later. The steady increase in Hb 
level continued till it plateaued about 14 months after VZV 
infection. A repeat BM biopsy showed resolution of the severe 
erythroid hypoplasia and regeneration of the erythroid 
precursors in the BM [3]. Interestingly, this report conϐirmed 
not only the time line for VZV to start its effect on the 3 cell 
lines in the BM, but also conϐirmed that VZV infection may 
cause stimulation of BM function in patients with HMs and 
BM failure which may last for years as reported by Al-Anazi 
KA, et al. in their retrospective study published in 2005 [1,3]. 

Graft versus host disease and its association with VZV: 
Acute and mild chronic graft versus host disease (GVHD) 
are associated with brisk recovery of humeral immunity 
after HSCT while moderate to severe degrees of GVHD are 
associated with impaired immunological recovery following 
HSCT. Immune suppression is a major contributor to viral 
infections or reactivations of these infections following HSCT 
[4]. Immunosuppressive therapies, including corticosteroids, 
given to control GVHD are associated with increased risk of 
infectious complications [5]. Bacterial and viral infections 
can theoretically contribute to the elevation of inϐlammatory 
cytokines after allogeneic HSCT, ultimately leading to 
aggravation of acute GVHD [6,7]. The following strategies 
have been used to enhance graft versus cancer (GVC) effects: 
(1) tapering then discontinuation of immunosuppressive 
therapies in recipients of allogeneic HSCT not encountering 
GVHD; (2) use of donor lymphocyte infusions; (3) infusion of 
genetically manipulated cells or selected cellular populations 
such as: dendritic cells (DCs), CD8+ memory T-cells, and 
chimeric antigen receptor (CAR)-mediated T-cells; (4) 
oncolytic viruses such as myxoma virus to control GVHD 
while preserving GVC effect; and (5) mesenchymal stem 
cells (MSCs) that can used not only in the prevention but 
also in the treatment of GVHD have been shown to exert GVC 
effect while prolonging OS following allogeneic HSCT [8-18]. 
Interestingly, several studies have demonstrated that VZV 
infection may trigger chronic GVHD following allogeneic HSCT 
[19-21]. GVHD is associated with GVC effects and provided 
GVHD is of low-grade, it can be associated with improvement 
in OS in patients with acute leukemia or lymphoma [22-24]. 

Oncolytic viruses and the rising role of VZV: Viruses 
have 2 opposing faces: on one hand they can induce harm 
and disease with early as well as late complications that may 
be associated with signiϐicant morbidity and mortality and 

rarely cellular transformation and cancer; while on the other 
hand, viruses may provide hope to effectively treat several 
serious medical illnesses [25,26]. Examples of the usefulness 
of certain viruses in the treatment of speciϐic diseases 
include: (1) use of viruses as vaccines, (2) use of genetically 
engineered or naturally occurring viruses as anticancer 
agents in the setting of oncolytic virus therapy, and (3) use of 
viruses as vectors in: induced pluripotent stem cells (iPSCs), 
gene therapy for various hereditary and acquired diseases, 
as well as CAR T-cell therapy [25-33]. Oncolytic viruses 
preferentially or selectively replicate in and subsequently 
kill cancer cells and they spread within the tumor without 
causing damage to surrounding healthy or normal tissue 
[34-36]. Oncolytic viruses can be used in combination with 
cytotoxic chemotherapy to have synergistic anticancer 
effects as they can efϐiciently kill cancer stem cells (CSCs) in 
several cancers [31,33,34]. 

Alpha-herpes viruses can induce apoptosis, autophagy 
and necrosis through different molecular mechanisms. These 
pathways inϐluence infection and replication of alpha-herpes 
viruses and therefore they may become additional candidates 
for cancer therapy [37]. As an efϐicient oncolytic virus, herpes 
simplex virus (HSV) has the following advantages: (1) quick 
replication in cells and infection of multiple types of cancer 
cells, (2) easy modiϐication and insertion of its large genome, 
(3) prevention by antiviral agents, (4) modiϐication of its 
glycoprotein can improve targeting of tumor cells, and (5) 
ability to escape the immune response of the host in order to: 
(a) complement and incapacitate immune globulins via viral 
glycoproteins, (b) block maturation of antigen presenting 
cells, (c) inhibit production of cytokines and chemokines 
from infected cells, (d) evade the host immunological 
surveillance, and (e) inhibit cell death and apoptosis induced 
by cytotoxic T-lymphocytes [35]. So far, VZV is the only virus 
consistently reported to have an inverse association with 
glioma suggesting a protective effect of VZV against glioma 
[38-40]. Studies have shown the following: (1) the protective 
effect of VZV against the tumor is stronger for high-grade 
glioma, (2) the protective effect of prior VZV infection against 
the incidence of glioma may be mediated by the VZV-speciϐic 
T-lymphocytes, (3) VZV exhibits an intrinsic oncolytic 
potential in malignant glioma cultures and might become a 
novel candidate for virotherapy in glioblastoma multiforme, 
and (4) human MSCs are suitable for delivering VZV to 
the sites of tumor growth [38,39,41]. However, efϐicacy of 
oncolytic virotherapy in malignant glioma has the following 
difϐiculties: (1) poor penetration of the viral particles across 
the blood brain barrier (BBB), (2) ineffective transduction 
of sufϐicient numbers of malignant glioma cells, (3) poor 
oncolytic potential, (4) limited tumor cell selectivity of stable 
gene delivery, and (5) uncontrolled host immune reaction 
with considerable adverse effects and complications of the 
viral infections [41]. 
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Update on VZV infections and their management

The virus and its genome: VZV is a human neurotropic 
virus which is highly contagious. It is an exclusively human 
pathogen and this makes is extremely difϐicult to ϐind an 
animal model for the virus [42-44]. VZV is a double stranded 
DNA virus that belongs to the alpha group of herpes viruses. 
VZV genome is approximately 125 kbp in size and is the 
smallest among herpes viruses. VZV genome, which has 
74 open reading frame (ORF) proteins, consists of a linear 
double-stranded DNA molecule [45-48]. The genome 
consists of 2 main coding areas: the unique long segment 
and the unique short segment, each of which is ϐlanked by 
internal repeat and terminal repeat sequences [46-48]. The 
virion is composed of an icosahedral nucleocaspid; that 
harbors the DNA genome; surrounded by a tegument layer 
which is covered by an envelope derived from the host cell 
or a plasma membrane with incorporated viral glycoproteins 
as shown in ϐigure 1 [45-48]. Over approximately 70 million 
years of evolution, the VZV genome has lost almost all the 
genes that are not essential for its survival [47]. Relatively 
small genomes and high proliferation rates allow viruses to 
accumulate mutations and continuously present the host 
with new challenges. Consequently, viruses either escape 
detection or modulate host physiology often by redirecting 
cellular pathways to their own advantage [49]. 

Epidemiology and risk factors: There are several 
risk factors for the developments of VZV infections. These 
predisposing factors are shown in table 1 [3,50-78]. Initial 
studies have identiϐied the following 4 geographical VZV 
genotypes: genotype A in Africa and Asia, genotypes B and 
C in North America and Europe, and Genotype J in Japan 
and South Korea [79,80]. Single-nucleotide polymorphism 
and restriction fragment length polymorphism are used in 
detecting these genotypes [79-84]. Recently, the following 
new genotypes: E1, E2, M1, M2, M3, M4, VI, VII, VIII, IX have 
been described in: Germany, Czech Republic, Spain, France, 
Australia, and New Zealand [81-88]. 

New data on the pathogenesis of VZV infections:  

VZV pathogenesis: Primary VZV infection causes viremia 
in T-lymphocytes. Viremia induces the characteristic skin 
rash [89,90]. Subsequently the virus migrates in a retrograde 
manner via sensory neurons into dorsal root ganglia where 
latency is established. Later on, VZV reactivation from dorsal 
nerve ganglia causes antegrade travel of the virus to cause the 
dermatomal disease of HZ [89-91]. VZV establishes latency in 
multiple cranial and dorsal root ganglia as well as thoracic 
sympathetic and enteric ganglia [90,92]. VZV-infected 
lymphocytes are used to induce latent infection in sensory and 
enteric neurons. However, evidence suggests that exosomes 
and stimulator of interferon (IFN) genes may play roles in the 
establishment of neural latency by preventing proliferation 
[90,93]. During productive infection, the complete proteome 

of VZV is expressed through the interaction between a small 
number of viral transcriptional activators and the general 
transcription apparatus of the host cell [94]. Productively 
infected cells frequently form multinucleate syncytia 
consisting of fused cells. These syncytia are present in 
human skin, ganglionic tissue, and tissue cultures [95]. The 
interaction between VZV-immediate early (IE) 63 protein 
with human antisilencing function 1 protein may help to 
regulate transcription of viral or cellular genes during lytic 
and/or latent infection [96,97]. The cellular component 
host cell factor-1 is a key factor for controlling VZV-IE gene 
expression by functioning as the common element for distinct 
factors cooperating at the IE gene enhancers [98]. The major 
viral transactivator, commonly designated the IE-62 protein, 
interacts with the human mediator of transcription [94]. 

Pathogens have evolved strategies to promote their 
survival by dramatically modifying the transcriptional 
proϐile and protein content of the host cells they infect. 
Thus, pathogens are able to induce long-term and heritable 
changes that are essential to the pathogenesis of infectious 
diseases and persistence of pathogens within the hosts [97]. 

Figure 1: Showing the varicella zoster virus genome.

  (1) Old age, female gender and white race.                               
(2)  Congenital and hereditary predisposition: 
                     [a] Inborn errors of RNA polymerase III. 

                     [b] Certain genetic mutations such as: GATA2, DOCK 2, DOCK 8, IFNGR1, and TYK 2. 

                     [c] Genetic variation in the HLA region such as HCP5. 

                     [d] Family history of VZV infections. 

 (3) Acquired disorders: 
     [A] Primary and secondary immunodeficiency such as: 
             (1) Hematologic malignancies: leukemia, lymphoma, and multiple myeloma. 

             (2) Solid tumors. 

             (3) Transplantation:      - Hematopoietic stem cell transplantation. 

                                                    - Solid organ transplantation. 

             (4) Immunosupressive therapies:                                                                       

                          - Corticosteroids, cyclosporine-A, and antithymocyte globulin. 

                          - Cytotoxic chemotherapy 

                          - Novel therapies and monoclonal antibodies such as: thalidomide,  

                             lenalidomide, bortezomib, rituximab, and alemtuzumab. 

             (5) Human immunodeficiency virus. 

             (6) Diabetes mellitus. 

             (7) End-stage renal disease. 

             (8) Collagen vascular disorders:   - Systemic lupus erythromatosis. 

                                                                    - Rheumatoid arthritis 

             (9) Cytopenias and bone marrow failure syndromes such as acquired aplastic anemia.   

  [B] Miscellaneous:             - Use of statins 

                                                    - Exposure to sunlight 

                                                    - Exposure to immunotoxins. 

                                                    - Mechanical trauma. 

                                                    - Psychological stress. 

Table 1: Risk factors for varicella zoster virus infections.
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VZV is a highly fusogenic virus. Fusion of VZV-infected cells 
is a consequence of virally expressed glycoproteins. Fusion 
permits entry of VZ virion at the plasma membrane and into 
the intracellular cytoplasm [95]. Herpes viruses possess 
complicated mechanisms to seize various host cellular 
components for immune evasion, replication, and virion 
egress [99]. Viruses have evolved in tight association to the 
host cell to be able to hijack the cellular apparatus that is 
necessary for their replication. They depend on many aspects 
on the cellular machinery of the host in order to replicate 
efϐiciently [100]. Exosomes can shuttle various molecular 
cargo from a donor to a recipient cell. They serve as important 
vehicles facilitating cell-to-cell communication [99]. Cell-to-
cell fusion induced by VZV infection has long been known to 
occur among ϐibroblasts and keratinocytes during formation 
of vesicles in the skin in both primary (chickenpox) and 
secondary (HZ) infections [90,91,95,101]. 

The virus-host interactions: Viruses routinely 
manipulate the host cell cycle to create a favorable 
environment for replication and while evading detection, 
viruses utilize a diverse array of strategies and molecular 
targets to subvert cellular processes and these include: (1) 
cell-to-cell regulation, (2) major histocompatibility complex 
(MHC)-restricted antigen presentation, (3) intracellular 
protein transport, (4) apoptosis, (5) cytokine-mediated 
signaling, and (6) hormonal immune responses [49]. Virus 
infection of mammalian cells activates DNA damage response 
pathways to enhance viral replication. Also, cells respond to 
DNA damage by activating checkpoint pathways that: delay 
the progression through the cell cycle, promote DNA repair, 
and induce cell repair [102]. In classical human infections, 
VZV rarely infects dividing cells such as skin ϐibroblasts, 
differentiated keratinocytes, mature T-cells, and neurons 
none of which are actively synthesizing DNA [103]. However, 
VZV is able to productively infect these cells and use their 
machinery to replicate the viral genome. VZV infection of 
human foreskin ϐibroblast cells results in atypical cyclin 
expression and cyclin-dependent kinase activity [103]. 

Transcription of the virus is strictly regulated by cascade-
like processes: expression of IE transcripts, and expression 
of early then late kinetic classes of transcripts. The viral E 
genes encode proteins that are used in DNA replication, 
while viral L genes code for the structural elements of 
the virus [104]. While multiple alternatively spliced VZV 
latency associated transcript (VLT) - isoforms are expressed 
during lytic infection, a single unique VLT isoform; which 
speciϐically suppresses ORF 61 gene expression in co-
transfected cells; predominates in latently VZV infected 
human trigeminal ganglia [104]. Activation of: (1) H2A which 
is a member of histone family that interacts with eukaryotic 
DNA and helps to regulate transcription; and (2) ATM (ataxia 
telangiectasia-mutated) in VZV-infected cells is associated 
with the expression of speciϐic VZV genes [102]. Both VZV-
ORF 28 and VZV-ORF 29 genes, which can be expressed 
either coordinately or independently, are expressed during 
VZV lytic infection but only the latter is expressed in latently 
infected neurons. However, the observed expression of 
only VZV-ORF 29 gene during VZV latency may involve 
neuron speciϐic cellular factors and/or structural aspects 
to the latent viral genome [105]. The virions could deliver 
proactive cellular kinase to non-dividing cells that normally 
do not express it. Cellular kinases play an important role in 
the phosphorylation of VZV proteins [106]. IE 62, which is a 
constituent of the virion tegument, is a substrate for cyclin-
dependent kinase 1/cyclin B [106]. The time line for primary 
and secondary VZV infections with the main pathological 
events and associated immunological changes as well as the 
BM stimulatory effects are illustrated in ϐigure 2 [1,3,89-
91,95,101,106]. 

Autophagy: Autophagy or self-eating involves 
degradation of cytoplasmic constituents in lysosomes which 
are able to break down all cellular macromolecules including 
lipids, polysaccharides and proteins by means of their 
hydrolases [107]. Autophagy is an ancient survival strategy 
and a well-recognized catabolic process by a stressed 
cell during which misfolded or damaged proteins are 

Figure 2: Timeline for pathological events and bone marrow consequences of varecella zoster virus infections.
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engulfed within double-walled cytoplasmic granules called 
autophagosomes [47,89,108,109]. The 3 major autophagy 
pathways that exist in mammals include: microautophagy, 
macroautophagy, and chaperone-mediated autophagy 
[107,110,111]. The molecular machinery of autophagy 
which generates autophagosomes in cells was originally 
described by Yoshinori Ohsumi who was awarded Nobel 
prize in physiology and medicine in 2016 [107]. Autophagy 
is a highly conserved pathway among eukaryotes that 
involves recognition, capture, and trafϐicking of various 
intracellular components to the lysosome for degradation. 
So, it is responsible for maintaining cellular homeostasis in 
response to various internal and external stimuli [110,111]. 
Autophagy is tightly controlled by a set of autophagy-related 
gene proteins and secretory autophagy is a mechanism by 
which viruses replicate and spread [110]. 

The discovery of lysosomes by Christian de Duve in 1955 
was a landmark in studying intracellular protein degradation 
[110]. Herpes viruses recruit autophagic membranes into 
their envelopes [107]. Autophagy is closely associated with 
VZV infection [47]. Unlike HSV, VZV genome has no inhibitors 
of autophagy [47]. Autophagy within a VZV-infected cell 
is remarkably different from autophagy within a HSV-
infected cell [108]. VZV-induced autophagy facilitates VZV 
glycoprotein biosynthesis and processing [91]. During VZV 
infection autophagy is up-regulated and autophagic ϐlux is 
increased, while inhibition of autophagy leads to a marked 
reduction in viral spread. Thus, VZV partially inhibits the late-
stage of mTOR-mediated autophagic ϐlux and the inhibitory 
effects are more pronounced when the cells are under stress 
[109]. Also, inhibition or block of autophagic ϐlux may yield 
higher VZV titers [111]. 

The role of epigenetics in herpes viruses and VZV: 
Modulation of protein acetylation via histone deacetylases 
(HDACs) is a critical regulatory factor during herpes virus 
infection [112]. Viruses have evolved a wide array of 
mechanisms to destroy HDAC functions [112,113]. Viral 
genomes need chromatin for protection and execution 
of their gene expression programs. The assembly and 
distribution of active (euchromatic) chromatin or repressive 
or heterochramatin on viral genome can determine the fate 
of the virus including the ability to establish latent infection 
[114-116]. Most viruses struggle to modulate and utilize 
the chromatin machinery of host cells to promote efϐicient 
lytic infection and to control persistent latent states [117]. 
Telomeres and viruses utilize common mechanisms to 
maintain genome integrity and regulate innate immunity. 
Telomeres may provide host cells with antiviral functions 
by trapping invading genomes and suppressing their 
expression through inaccessible heterochromatic structures 
[118]. Epigenetic manipulation using DNA methyltransferase 
inhibitors and HDAC inhibitors may potentially become novel 
epigenetic antiviral therapies [119]. Inhibition of the histone 

demethylase LSD1 results in accumulation of repressive 
chromatin and blockade of viral genome expression and 
ultimately inhibition of α-herpes virus lytic as well as latent 
infections [115]. 

Clinical manifestations and complications of VZV 
infections

Primary infection usually occurs in childhood and causes 
chickenpox. After primary infection, VZV becomes latent in 
nerve ganglia (dorsal root, cranial nerve, trigeminal, and 
autonomic ganglia) [42,58]. Reactivation may occur decades 
later and the virus causes HZ infection with typical painful 
skin rash that has characteristic dermatomal distribution 
[42,58]. The predisposing factors for reactivation of VZV 
infection are shown in table 2 [42,58,120,121]. In severely 
immune compromised individuals, pre-existing antibody 
does not prevent VZV reactivation, but may contribute to 
decreased viral load thus resulting in mild clinical course 
[120]. The clinical manifestations and complications of VZV 
infections are shown in table 3 [42,58,121-127]. In immune 
compromised hosts having VZV infection, atypical skin 
eruption may be encountered and disseminated infection 
may also develop even in the absence of skin lesions [58,120]. 

Laboratory diagnosis of VZV infections

The diagnosis of VZV infection is usually made on 
clinical grounds based on the presence of the characteristic 
skin lesions of chickenpox or HZ [42,90,128]. However, 
additional diagnostic techniques may be needed to conϐirm 
the diagnosis and these include: (1) virus isolation by culture 
which carries a low yield rate, (2) serology using enzyme-
linked immunosorbent assay (ELISA), (3) direct ϐluorescent 
antibodies on scrapings obtained from active skin lesions, 
and (4) real-time polymerase chain reaction (RT-PCR) which 
has higher sensitivity than serological assays [42,90,128]. 
Acyclovir resistance of VZV infections has been reported on 
rare occasions in immune compromised individuals such 
as acquired immunodeϐiciency syndrome (AIDS) patients 
and recipients of solid organ transplantation (SOT) [129-
131]. The characterization of drug resistance using genetic 

(1) Old age, male gender and Afro-Caribbean descent.  

(2) Immunosuppression due to: 

        - Disease: malignancy and autoimmune disorders. 

        - Drugs: immunosuppressive agents, and cytotoxic chemotherapy. 

        - Radiotherapy. 

       - Transplantation: solid organ and stem cell transplants. 

       - Trauma: surgical or accidental. 

(3) Comorbid medical conditions:   

             - Diabetes mellitus. 

             - End-stage renal disease. 

             - Chronic obstructive airway disease. 

             - Depression.     

Table 2: Predisposing factors for reactivation of varicella zoster virus infections
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testing of the thymidine kinase and polymerase genes has 
been considered the method of choice for the determination 
of VZV resistance to antiviral agents [129-131]. Ultra-deep 
sequencing, after initial detection of drug resistant mutations 
by Sagner sequencing, can be used in immune compromised 
hosts [132]. 

Treatment, vaccination and antiviral prophylaxis 

Treatment of VZV infections: The available therapies 
for VZV infections include: (1) acyclovir which has been 
the standard of care for many years; (2) valaciclovir; (3) 
famciclovir; (4) bromovinyl deoxyuridine (brivudine); 
and (5) bicyclic pyrimidine nucleotide analogues (BCNAs) 
[1,133-136]. In immune compromised individuals, high-dose 
acyclovir is usually recommended intravenously for a total 
duration of 7 to 10 days [1,3,135,136]. Brincidofovir has 
been successfully used in the treatment of acyclovir resistant 
disseminated VZV infection in immune compromised 
hosts such as recipients of HSCT having GVHD [137]. Also, 
intravenous and intravitreal foscarnet have been successfully 

used in the treatment of acyclovir resistant acute retinal 
necrosis (ARN) caused by VZV infections [138-140]. BCNAs 
have been found to be more potent against clinical isolates 
of VZV than acyclovir or brivudine. However, BCNAs are not 
active against VZV strains that are resistant to acyclovir or 
brivudine and that bear mutations in the viral thymidine 
kinase gene [134]. A novel anti-VZV compound (35 B2 
derivative of pyrazolo-1,3,5-triazin-4-one) can inhibit both 
acyclovir-resistant and acyclovir-sensitive strains of VZV by 
targeting herpes virus major capsid protein and inhibiting 
normal capsid formation [141]. Other new therapeutic agents 
for the treatment of VZV infections include: (1) aryl bicyclic 
nucleoside analogues such as FV-100; (2) BCNAs as various 
types of these agents have been found to be promising future 
therapies for VZV infections; and (3) bicyclic aryl furano 
pyrimidines [133,142,146]. For post-herpetic neuralgia 
(PHN), gabapentin as well as local and systemic analgesics 
are usually prescribed [135,147,148]. 

VZV vaccines: There are two types of VZV vaccines: (1) 
varicella vaccines such as varilrix- in the United Kingdom, 
varivax-in the United States of America (USA), and the 
combined measles, mumps and rubella and varicella vaccine, 
all of which contain live-attenuated oka strain of VZV; and (2) 
HZ vaccines that include zostavax, and HZ/su [91,149,150]. 
Zostavax is the only HZ vaccine that is currently approved 
in Europe and the USA. It contains the live attenuated VZV 
oka stain and it is given as one injection subcutaneously. It 
is recommended in immunocopetent adult’s ≥ 60 years old 
with overall efϐicacy of 51.3%. It reduces the incidence of HZ 
by 51% within a 3 year period but a signiϐicant reduction in 
vaccine-induced immunity is observed within the ϐirst year 
after vaccination [91,149,150]. HZ/su is a subunit vaccine 
candidate that has recently shown improved efϐicacy of 
HZ prevention in 2 phase III clinical trials. It is non-live, 
recombinant subunit glycoprotein E+adjuvant ASO1. It is 
given intramuscularly twice. It is recommended for immune 
competent individual’s ≥50 years with overall efϐicacy of 
97.2% [91,149,150]. Post exposure immune globulins or 
immunoglobulin prophylaxis with ZariZIG is usually given 
to individuals having recent contact with patients infected 
with VZV [149,151]. The main indications of VZV vaccination 
include: health care providers, post exposure prophylaxis, 
and individuals ≥50 years of age [43,151,152]. However, VZV 
vaccination is traditionally contraindicated in the following 
groups of patients: (1) patients having solid tumors or HMs 
particularly those on cytotoxic chemotherapy or novel agents; 
(2) recipients of SOT or HSCT receiving immunosuppressive 
therapies; (3) patients having autoimmune and collagen 
vascular disorders treated monoclonal antibodies; (4) 
AIDS patients; (5) patients receiving long-term high dose 
corticosteroids; and (6) patients having active VZV infections 
[43,151,152]. 

Before the development of VZV vaccines, there was 
almost universal infection with VZV which has become 

(5) Eye involvement:    - Acute retinal necrosis and progressive outer retinal necrosis. 

                                       - Scleritis; keratitis; cataract; and corneal ulcers, scars and perforation. 

                                       - Proptosis and exophthalmos. 

                                       - Optic neuritis, optic atrophy, and papilledema. 

                                       - Ophthalmoplegia: diplopia and ptosis (III, IV and VI cranial nerves). 

                                       - Posterior uveitis, retinal detachment and blindness. 

(6) Immunocompromised patients:            - Atypical skin eruptions. 

                                                                   - Disseminated infection in the absence of skin lesions.  

                                                                    - Mortality rates: 5%-15%. 

(7) Other complications:                  - Secondary bacterial infection of skin lesions. 

                                                          - Enteric complications: gastric and colonic ulcers 

                                                          - Visceral and disseminated infection: liver, lung and brain.  

                                                          - Osteonecrosis and spontaneous exfoliation of teeth. 

                                                          - Radicular pain without skin rash (zoster sine herpete).  

(1) Prodromal symptoms, for few days before appearance of skin lesions, such as fever, malaise and 

local pain. 

(2) Typical skin eruptions: 

     - Chickenpox:  vesicular eruption, sparing limbs, mainly over face, head and trunk. 

     - Herpes zoster: - Crops of skin lesions involving ≥ 1 dermatome.  

                               - Usually unilateral, rarely bilateral. 

                              - Progression from papules to vesicles then crusts. 

                              - Commonly over chest, then trigeminal nerve distribution. 

(3)  Lungs: pneumonia is particularly severe in adults. 

(4) Nervous system:   - Postherpetic neuralgia.                 

                                   - Meningitis, cerebritis and encephalitis. 

                                   - Vasculopathy: headache, fever, mental changes, transient ischemic attacks,  

                                                            and stroke. 

                                   - Segmental weakness and radiculopathy. 

                                   - Myelitis and myelopathy: progressive myelitis and spastic paraparesis. 

                                   - Cranial neuropathies and giant cell arteritis. 

                                   - Guillain-Barre syndrome. 

                                   - Ramsay Hunt syndrome: lower motor neuron facial palsy with 

                                     nausea,vomiting, tinnitus, hearing loss, vertigo and nystagmus.  

Table 3: Clinical manifestations and complications of varicella zoster virus 
infections.
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endemic worldwide [153]. Developments in varicella and 
HZ vaccines which require a better understanding of the 
host response to VZV can offer the potential to prevent the 
majority of VZV infections [150,153]. The implementation 
of universal varicella vaccination in many areas around the 
globe >20 years ago has resulted in a signiϐicant reduction 
in the burden of varicella-associated disease [154]. Both 
VZV infection and varicella vaccination can induce VZV-
speciϐic antibodies and T-cell mediated immunity that are 
essential for recovery [154]. Several countries have also 
adopted VZV vaccination for high-risk groups [154,155]. 
Despite the rare reports of breakthrough VZV infections that 
may become disseminated and life-threatening particularly 
in immune compromised hosts, VZV vaccines including the 
live-attenuated ones are generally safe as shown by a 10 
year global safety database as well as 2 systematic literature 
reviews, each of which included at least 31 million doses 
of VZV vaccines administered [151,156-159]. VZV vaccines 
including the live attenuated ones have been shown to be 
safe in recipients of: SOT as well as HSCT, both autologous 
and allogeneic, in addition to patients with HMs and solid 
tumors [160-168]. Additionally, VZV vaccines have been 
shown to be effective and safe in: (1) patients with diabetes 
mellitus, autoimmune disorders and renal disease, (2) elderly 
individuals on corticosteroid maintenance therapy and those 
living in long-term care facilities, and (3) individuals with 
history of HZ infection [169-173]. 

 Prophylaxis against reactivation of VZV infections: 
Reactivation of VZV infections may occur in patients with 
various HMs and in recipients of autologous as well as 
allogeneic HSCT [77,174-177]. Reactivation of VZV infections 
in these severely immune compromised individuals may 
be associated with complications such as disseminated 
infections, signiϐicant morbidity, and mortality rates that 
may reach 34% [77,174-179]. Therefore, prevention of 
reactivation of VZV infections in this group of patients; 
particularly those with MM, low lymphocytic count, and 
those on long-term corticosteroid therapy; is needed 
to prevent complications of VZV infections [77,174-
177,179,181]. Acyclovir prophylaxis is recommended in 
patients with: (1) HMs receiving intensive chemotherapy or 
novel agents, and (2) recipients of autologous and allogeneic 
HSCT [174-177, 179,181,182]. Initially, there was a trend 
to give acyclovir prophylaxis for up to 6 or 12 months in 
recipients of autologous and allogeneic HSCT respectively 
[174,178,180,182]. Nowadays, the recent literature is in 
favor of giving antiviral prophylaxis for longer than one year 
in recipients of HSCT [174,175,177,178,180,182]. Several 
retrospective studies have shown that extended prophylaxis 
with acyclovir has been shown to be safe and effective 
[175,180]. However, the beneϐits and safety of long-term 
prophylaxis with low-dose acyclovir should be conϐirmed in 
large prospective trials as long-term use of acyclovir may be 
associated with not only side effects, but also with evolution 
of drug resistance [180,182]. 

Animal and other experimental models for VZV 

VZV pathogenesis, latency, and reactivation are difϐicult 
to study due to the fact that VZV is an exclusively human 
pathogen [150,183,184]. Due to the strict host speciϐicity 
of infection and cell-associated nature of the virus, our 
knowledge of host-pathogen interaction regarding VZV 
infection and VZV pathogenesis, latency and reactivation 
remains incomplete [150,183,185]. Development of more 
efϐicacious second generation vaccines and antiviral 
therapies against VZV as well as better understanding of the 
host response to VZV infection are hampered by the scarcity 
of animal models that recapitulate all aspects of VZV infection 
including virological, immunological and pathological 
hallmarks of both acute and latent VZV infection in humans 
[150,183-186]. Normal human neuronal progenitor cells in 
tissue-like assemblies have been shown to be an effective 
system to investigate the long-term interactions between 
VZV and the complex assemblies of human neuron cells [183]. 
Experimental inoculation of mice and other non-human 
primates (NHPs) with VZV has produced seroconversion 
but not varicella, while simian varicella virus (SVV) has 
produced a naturally occurring exanthematous disease that 
mimics human varicella in NHPs [185,187]. Experimental 
SVV inoculation into rhesus macaques via intrabronchial 
route can reproduce the hallmarks of acute VZV infection 
in humans including: viremia, generalized varicella T and 
B cell responses, resolution of viremia and varicella, and 
establishment of latency in only ganglionic neurons. However, 
reactivation of VZV has not been experimentally induced by 
the rhesus macaque model [150,185]. The severe combined 
immunodeϐiciency-humanized mouse model has been 
applied to study VZV pathogenesis where it has facilitated 
rigorous evaluation of the role of several genes in vivo and 
it has demonstrated the following: (1) ORF-47 and ORF-66 
are required for VZV replication in human T-cells, (2) ORF-47 
and ORF-14 are necessary for infection and replication in skin 
cells, and (3) the C terminus of VZV glycoprotein M contains 
trafϐicking moϐits to maintain skin virulence in studying the 
pathogenesis of VZV [150,188,189]. 

Recently, terminally differentiated neurons have received 
increased attention as a means to study the interactions 
between VZV and human neurons, but the short life-span 
of these cells in culture has limited their application [183]. 
Sensory neurons are the only types of cells that support 
the entire VZV life cycle. After generation of human iPSCs 
from skin ϐibroblasts, sensory neurons have been produced 
from these human iPSCs. Hence, generation of iPSCs and 
sensory neurons may advance our knowledge regarding the 
pathogenesis of VZV and these cells may serve as a platform 
for the development of new therapeutic interventions 
[190]. Neurons have also been generated from human 
embryonic stem cells (ESCs) and infection of these neurons 
has demonstrated axonal infection, transport of VZV, and 
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evidence of productive neuronal infection [191]. Several 
studies have shown that neurons derived from human 
ESCs are highly permissive to a productive and spreading 
VZV infection and that whether the infection is productive 
or not depends on the infectious viral dose. Thus, these 
neurons may provide an experimental or in vitro model of 
latency and reactivation of VZV [192-195]. Over the last few 
years, the ϐield of VZV latency and reactivation has greatly 
advanced due to the derivation of human neurons to perform 
mechanistic studies in vitro, and the advanced molecular 
techniques which have led to the identiϐication of VLT in 
vivo [196]. Studies have shown that types I and II IFNs 
inhibit viral replication and that IFN-γ inhibits transcription, 
replication, and production of neurons derived from iPSCs 
[196-198]. Hence, IFNs could be used to induce a VZV latent 
phenotype in human neurons or to inhibit VZV reactivation 
[196]. Concentration of VZV-containing supernatant, use of 
debris fraction, and generation of reporter cell line are useful 
techniques to study virus entry and latency, detect virus, and 
design new antiviral agents [199-201]. Numerous efforts 
have been made to develop adequate animal models of VZV 
infection but these models remain limited because all aspects 
of VZV infection, latency and reactivation, understanding VZV 
pathology will not only remain difϐicult but also incomplete 
without a suitable model [150,184]. 

Bone marrow microenvironment and hematopoiesis

Bone marrow microenvironment: The BM microenvi-
ronment is the domicile of hematopoietic stem cells (HSCs) as 
well as the malignant processes that develop in the BM [202]. 
The best characterized BM microenvironment is the niche 
that regulates HSCs [203]. The BM niche or microenviron-
ment has the following components: (1) cellular components 
such as MSCs, HSCs, and derivatives of MSCs such as: osteo-
blasts, adipocytes, endothelial cells, perivascular cells, and 
Schwann cells; and (2) functional components that are com-
posed of the following growth factors and cytokines which 
regulate hematopoiesis: stem cell factor (SCF), transforming 
growth factor (TGF)-β, granulocyte-colony stimulating factor 
(G-CSF), integrated-1/β-catenin (Wnt) ligands, CXC-moϐit-
chemokine ligand (CXCL)-12, angiopoietin and thrombopoi-
etin [204-207]. The following BM niche components share a 
common origin: peripheral sympathetic neurons, Schwann 
cells, and MSCs [207]. The interactions between the niche 
constituents and HSCs maintain hematopoiesis by: (1) regu-
lating renewal, differentiation, and migration or trafϐicking 
of HSCs; and (2) integrating neural and hormonal signals 
from the periphery [208]. The main function of BM micro-
environment is to provide signals that regulate and support 
the production of billions of blood cells which are necessary 
to maintain homeostasis [209]. BM niche regulates endog-
enous processes such as hematopoiesis but could also sup-
port the survival of tumors such as facilitating existence of 
CSCs in dormancy for decades [206-210]. The following are 
implicated in the maintenance of HSCs: endosteal ϐibroblasts, 

perivascular stromal cells including endothelial cells, CXCL-
12, CXCL-12-abundant reticulin cells, leptin-receptor+ stro-
mal cells, and nestin- GFP+ mesenchymal progenitors [211]. 
CXCL-12 plays a crucial role in maintaining HSC functions 
including retention in the BM, quiescence, and repopulating 
activity [208]. 

HSCs which give rise to all blood cells, including imma-
ture cells, are maintained and regulated by special microen-
vironment or niches in the BM cavity [212]. NOTCH signaling 
is crucial for HSC maintenance. Adipocytes are a BM niche 
component that promotes hematopoietic regeneration [204]. 
Distinct stromal or hematopoietic progenitor cells in the BM 
niche generate signals that regulate self-renewal, prolifera-
tion and trafϐicking of HSCs [211]. HSC niche supports steady-
state hematopoiesis and responds to the changing needs dur-
ing stress and disease [212]. Additionally, the nervous system 
is an important regulator of HSC niche and its inϐluence is es-
tablished early in development when stem cells are speciϐied 
[212]. Neural crest-derived MSCs have regulatory pathways 
that control hematopoiesis in the hematopoietic niche [213]. 
Dyregulation between neural and hematopoietic systems can 
contribute to disease, thus repurposing of neuro-regulatory 
drugs may create new therapeutic opportunities to support 
hematopoiesis [212]. 

Steady-state and stress-induced hematopoiesis: 
Hematopiesis is the process by which all mature blood 
cells are produced [205]. New blood cells belonging to 
different cell lineages are produced from stem cells during 
embryogenesis and throughout the life-time of humans 
to replace cells that have completed their lifespan [214]. 
In hematopoiesis, which is essential for the development 
and survival of normal individuals, all the specialized 
hematopoietic cells are produced from a small number of 
deϐinitive multipotent HSCs [214,215]. Hematopoiesis is 
a highly organized process that leads to the formation of 
all types of blood cells from HSCs residing in the BM, and 
differentiation of HSCs into immune cells through a series 
of lineage commitments [214,216-218]. Hematopoiesis is 
under tight control of a group of hematopoietic cytokines 
[219]. Also, hematopoiesis is a dynamic biological process 
that can be inϐluenced by environmental factors such as 
infection or inϐlammation [220]. The same cytokines control 
basal as well as emergency hematopoietic cell proliferation 
[219]. However, each cytokine has multiple actions, mediated 
by receptors whose cytoplasmic domains contain specialized 
regions initiating the various responses such as survival, 
proliferation, differentiation commitment, maturation, 
and functional activation [219]. Thus, pro-inϐlammatory 
cytokines are emerging as novel and fundamental regulators 
of hematopoiesis. However, there are differences in the 
roles of some cytokines during fetal life and adulthood 
[217,221]. The different cytokines, chemokines, ligands, 
and signaling pathways that are involved in hematopoiesis 
for hematopoietic stem and progenitor cell (HSPC) 
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proliferation and myeloid differentiation are shown in 
table 4 [215,219,221]. There are molecular mechanisms 
that control HSC maintenance in homeostasis and these 
regulatory networks orchestrate the interplay of: (1) key 
transcription factors such as: FOXO, PTEN, Gϐi1, E47, and 
Notch; (2) survival genes such as: Bcl2, Mcl1, and Bcl-XL; 
and (3) cell cycle regulators such as: p16, p18, and p21 
[214,220]. Tumor necrosis factor (TNF) is an inhibitor of 
hematopoietic cell proliferation, while interleukin (IL)-6 and 
IL-1 induce viability and differentiation without inducing 
cell multiplication in normal myeloid precursors [214]. IL-6 
upregulates: Bcl-XL, Mcl-1, and FLIP genes and downregulates: 
Bcl-2 and Bax genes [214]. Regulators of multiple fates of 
HSCs require the cooperative actions of several cytokines 
and other hormones that bind to the receptors of these 
cells [221]. There are 7 groups of BM myeloid progenitor 
cells with certain transcriptional characteristics and these 
include: neutrophils, basophils, eosinophils, monocytes, DCs, 
erythrocytes, and megakaryocytes [222,223]. 

HSCs normally reside in specialized niches in the BM 
but they can circulate under stress conditions such as 
infection or inϐlammation [220,221]. HSCs repopulate the 
innate system during normal replenishment as well as 
under the burden of pathogen stress, but the respective 
outcomes of differentiation are not the same [220]. HSCs 
are maintained in a predominantly quiescent state, but they 
can rapidly enter cell cycle and differentiate in response to 
infection or inϐlammation [217]. During pathogen exposure, 
hematopoiesis may yield a progeny in proportions that 

are different from those produced under steady-state 
hematopoiesis and this may be due to: (1) pathogen 
engagement of Toll-like receptors (TLRs) expressed on HSCs, 
and/or (2) HSCs being responsive to inϐlammatory cytokines 
that are produced in response to pathogen burden and that 
are present in the BM microenvironment [217,220]. HSPCs 
respond to infection through 5 general mechanisms: (1) 
HSPCs respond to the depletion of downstream neutrophils, 
(2) they respond to the inϐlammatory cytokines produced 
by various hematopoietic and non-hematopoietic cells 
during infection, (3) HSPCs respond to pathogen-associated 
molecular patterns and danger associated molecular patterns 
directly through TLRs, (4) they respond to paracrine signals 
from the same niche, and (5) theoretically, pathogens can 
affect HSPC activity by infecting them [224]. 

In acute inϐlammation, types I and II IFNs, TNF, and 
lipopolysaccharide directly stimulate HSC proliferation 
and differentiation while in chronic inϐlammation, cytokine 
signaling leads to HSC exhaustion and may contribute to 
the development of HMs [225]. Studies have shown that 
cytokines and ligands which are produced during stress 
conditions such as infection include: (1) IFNs; (2) TNF; (3) 
cytokines such as; Il-1α, IL-1β, IL-3, Il-6, IL-18, IL-23, mtDNA, 
HMGB1, SCF, and thrombopoietin; and (4) Flt-3 ligand [224-
226]. However, certain cytokines that are induced during 
inϐlammation have signiϐicant effects on HSCs in the BM [225]. 
Pro-inϐlammatory cytokines such as G-CSF indirectly affect 
HSCs by altering BM microenvironment, disturbing the stem 
cell niche, and mobilizing HSCs into the peripheral circulation 
[225]. HSCs respond to microbial products and inϐlammatory 
cytokines permitting alteration in hematopoiesis in response 
to the burden of pathogen exposure [220]. The types of BM 
microenvironment responses or stress-induced changes 
in hematopoiesis in response to infection or inϐlammation 
include: (1) enhanced output of HSPCs and the myeloid BM 
lineage or emergency granulopoiesis giving rise to short-
lived neutrophils, basophils and eosinophils due to rapid 
mobilization of granulocytes and HSPCs from the BM to 
the peripheral tissues; (2) suppression of erythropoiesis 
and development of anemia or enhanced erythropoiesis as 
a physiological response to inϐlammation; (3) type I IFNs 
can shift HSCs from resting state or cell cycle arrest to 
induce proliferation and differentiation ultimately resulting 
in increased numbers of HSCs; (4) enhanced output of 
innate immune cells at the expense of lymphopoiesis and 
erythropoiesis; and (5) development of extramedullary 
hematopoiesis in the spleen and liver to open new resources 
for granulopoiesis and myelopoiesis so as to compensate 
for the diminished BM hematopoietic progenitor cells 
during infection [218,224]. The techniques that are used to 
deϐine hematopoiesis and to trace the changes induced by 
various stresses such as infection include: (1) novel imaging 
technologies such as intravital imaging and laser-scanning 
cytometry; (2) conditional knockdown technologies; and (3) 
ϐluorescence-activated cell sorting [216,218]. 

 
(1) Cytokines, chemokines, interferons, and growth factors: 

      - Interleukins (ILs): IL-1α, IL -1β, IL -3, Il-6, IL-18, IL-33. 

      - Interferons (IFNs): IFN-α, IFN -γ. 

      - Tumor necrosis factor-α. 

      - Colony stimulating factor (CSFs): granulocyte-CSF and macrophage-CSF. 

      -  Transforming growth factor-β 

      -  Fibroblast growth factor 

      - Insulin-like growth factor-2 

      - Thrombopoietin 

      - Angiopoietin, angiopoietin-like proteins.   

      - Pam 3 CSK4. 

      - HMGB1. 

      - mtDNA 

      - Lipopolysaccharide. 

      - Prostaglandin E2. 

      - Nephroblastoma overexpressed (NOV). 

(2) Ligands:   

             - Flt3. 

             - FMS-tyrosine kinase 3. 

             - Toll-like receptor (TLR). 

             - Notch.  

(3) Signaling pathways:    

           - NF-κβ 

           - STAT3 

           - Wnt                                                        

 

Table 4: The cytokines, chemokines, ligands and signaling pathways involved
in hematopoiesis, myeloid differentiation and HSPC proliferation.
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The range of proinϐlammatory cytokines produced 
during infection or tissue injury impact the size and shape 
of the hematopoietic system [217]. Pathogens disturb 
hematopoiesis through: (1) direct effect on HSCs either by 
infection or through exposure to microbial products; and (2) 
indirect effects on the BM microenvironment that supports 
stem cells [220]. The effects of inϐlammatory signals on 
HSCs at baseline or resting state and during times of stress 
or infection are likely to depend upon the level and duration 
of signaling with short-term exposures facilitating the 
development of effective immune responses while chronic 
signaling may contribute to HSC dysfunction [225]. Acute 
microbial infection elicits profound changes in hematopoiesis 
with alterations in numbers and proportions of uncommitted 
progenitor cells. For example, sepsis is characterized by 
hyperactivity of the immune system manifested by excessive 
production of pro-inϐlammatory cytokines and chemokines 
followed by hypoactivity and neutropenia [220]. Thus, 
stress-induced hematopoiesis is a highly complex and 
dynamic process that involves crosstalk between: HSPCs, 
BM stromal cells, and non-hematopoietic tissues to sense 
the invading pathogen and to convert the signal of infection 
into a signal of myeloid differentiation [224]. Hematopietic 
failure associated with overproduction of pro-inϐlammatory 
cytokines is often a feature of: chronic inϐlammatory 
diseases, HMs, and BM failure syndromes [217]. During 
systemic infection, cell death can directly affect HSPCs and 
this ultimately leads to impaired hematopoiesis, cytopenia 
and immune suppression [226]. Explanation of defects in 
emergency hematopoiesis encountered during systemic 
infection include: (1) inappropriate activation of cell death, 
and (2) suppression of HSPC proliferation, differentiation 
and self-renewal. Thus, the response of the progenitor cell 
compartment to intracellular infection and inϐlammatory 
cytokines may be central to an effective immune response 
[226]. 

VZV-associated pancytopenia and aplastic anemia

It is well recognized that peripheral blood cytopenia 
is the hematological hallmark of septic shock [226]. 
Additionally viruses can have tremendous impact on the 
hematopoietic process. Examples of the consequences 
of viral infections on the BM include: aplastic anemia, 
pancytopenia, lymphoproliferative diseases, hemophagocytic 
lymphohistiocytosis, and a variety of other cancers 
[218,227,229]. Examples of the viruses that have been 
reported to have adverse effects on BM function are: EBV, 
CMV, Parvovirus B-19, human immunodeϐiciency virus (HIV), 
hepatitis A virus, hepatitis C virus, dengue virus, VZV, and HSV 
[1,227,229,230]. The mechanisms involved in the adverse 
consequences of viral infections on the BM include: (1) direct 
viral infection of HSPCs, (2) viral recognition of HSPCs, (3) 
indirect effect on HSPCs by inϐlammatory mediators, and 
(4) the role of BM microenvironment on hematopoiesis 
upon viral infection [227,231-234]. VZV infections have 

been reported to cause not only transient pancytopenia 
but also aplastic anemia that may require allogeneic HSCT 
[66,227,235-237]. Several studies have shown that HZ is 
associated with increased risk of developing solid tumors as 
well as lymphoid malignancies [238-242]. 

Cells involved the pathogenesis of VZV 

Mesenchymal stem cells:

Mesenchymal stem cells and relation to VZV: MSCs 
are heterogeneous, non-hematopoietic, adult multipotent 
stromal progenitor cells that have the capacity of self-renewal 
and multi-lineage differentiation [243-248]. They can be 
isolated from BM, peripheral blood, umbilical cord blood, 
amniotic ϐluid, and adipose tissue [243-245]. MSCs have 
certain distinguishing features including the characteristic 
surface markers [243245]. MSCs have immunomodulatory 
and immunosuppressive properties that enable them to have 
several therapeutic and clinical applications which include: (1) 
prevention and treatment of GVHD in recipients of allogeneic 
HSCT, (2) treatment of several autoimmune disorders, (3) role 
in regenerative medicine and tissue repair such as treatment 
of myocardial ischemia, cardiac dysfunction and myocardial 
infarction, chronic wounds, and spinal cord injuries, and (4) 
treatment of acute respiratory distress syndrome [243-245]. 
MSCs are a major constituents of HSC niche which is a highly 
complex and dynamic microenvironment of the BM [208]. 
They are deϐined by a set of different markers such as: nestin, 
neural-glial antigen-2, leptin receptors, and paired related 
homeo box [202]. MSCs secrete HSC-supporting factors 
such as: CXCL-12, angiopoetin, and SCF/kit ligand [202]. 
They synthesize and secrete multiple paracrine factors that 
are able to: affect migration of MSC, promote angiogenesis, 
and inhibit apoptosis [249]. Nestin+ MSCs contain all the 
BM colony-forming-unit ϐibroblastic activity and can be 
propagated as non-adherent mesenpheres that can self-
renew and expand in serial transplantations [250]. Nestin+ 

MSCs are spatially associated with HSCs and adrenergic 
nerve ϐibers and they highly express HSC maintenance 
genes [250]. Leptin receptor is a marker that highly enriches 
BM-MSCs. Exosome secretome of BM-MSCs regulates stem 
cell maintenance and their regenerative potential [251]. 
The BM-derived secretome will be critical to the future 
development of therapeutic strategies for oncologic diseases 
and regenerative medicine [210]. Apparently, MSCs are 
the masters of survival and clonality as they communicate 
with diverse immune cells and interact with other cellular 
components of the BM microenvironment as well as with 
normal cells, leukemic stem cells, and progenitor cells [252]. 

The main functions of MSCs include: formation of 
hematopoietic microenvironment, modulation of the activity 
of the immune system, and regulating cell trafϐicking [253]. 
MSC homing is the arrest of MSCs within the vasculature of 
a tissue followed by transmigration across the endothelium 
[254]. When stimulated by speciϐic signals, MSCs can 
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be released from BM niche into circulation and can be 
recruited to the target tissues where they undergo in situ 
differentiation and contribute to tissue regeneration and 
homeostasis [255]. The efϐicacy of MSCs is linked to their 
immune suppressive and anti-inϐlammatory properties 
primarily due to the release of soluble factors [256]. Putative 
roles of BM-MSCs during infection: (1) phase 1, detection of 
pathogen and damage signal; (2) phase 2, activation of host 
immune response; (3) phase 3, elimination of pathogens; 
(4) phase 4, induction of proinϐlammatory gradients; and 
(5) phase 5, modulation of proinϐlammatory host immune 
response [245,248]. In immune compromised individuals: 
(1) the immunomodulatory activities of MSCs have raised 
safety concerns regarding the increased risk of viral 
infections and viral reactivation which are major causes of 
mortality following HSCT, and (2) the high susceptibility of 
MSCs to viral infections in vitro could reϐlect the destructive 
outcomes that might impair the clinical efϐicacy of MSC 
infusion [243]. However, data on the exact response of 
MSCs to viral infection in clinical settings is limited [243]. 
Examples of the immune regulatory properties of MSCs 
include: (1) inhibition of differentiation of monocytes to DCs, 
(2) alteration of cytokine proϐile of DCs resulting in down 
regulation of inϐlammatory cytokines and upregulation of 
regulatory cytokines, (3) induction of tolerant phenotypes 
of naïve and effector T-cells, (4) inhibition of antibody 
production by B-cells, and (5) suppression of natural killer 
(NK) cell proliferation and NK-mediated cytotoxicity [243]. 
BM-MSCs have emerging role in host defense: (1) they 
produce cytokines, chemokines and extracellular matrix 
(ECM) proteins, and (2) they may augment antimicrobial 
responses, abridge proinϐlammatory and damage responses, 
and ameliorate injury caused by the host defense to the 
pathogen [245,248]. The produced cytokines, chemokines 
and ECM proteins: support HSC survival and engraftment; 
inϐluence immune effector cell development, maturation, and 
function; and inhibit alloreactive T-cell response [248]. So, 
BM-MSCs appear to function as a critical fulcrum providing 
balance by: promoting pathogen clearance during the initial 
inϐlammatory response, and suppressing inϐlammation to 
preserve host integrity and facilitate tissue repair [248]. 

MSCs could potentially be involved at multiple levels in 
host defense, assuming roles in hematopoiesis and mobiliz-
ing immune effector cells in: direct stimulation of pathogens, 
and modulation of proinϐlammatory immune responses so 
as to minimize the tissue damage induced by inϐlammation 
[248,257]. The immunomodulatory properties of MSCs are 
mediated by both: cell to cell interaction and the secreted 
cytokines [246,257]. Several studies have shown that the fol-
lowing cytokines are secreted by MSCs: IFN-γ; IFN-α; IL-6; IL-
10; prostaglandin-E2; indoleamine-2,3-dioxygenase; TGF-β; 
vascular endothelial growth factor; intercellular adhesion 
molecule; CC chemokine ligand-2/monocyte chemotactic 
protein-1 (CCL-2/MCP-1); CCL-5/RANTES (regulated on ac-

tivation, normal T-cell expressed and secreted); monocyte-
CSF (M-CSF); GM-CSF; hepatocyte-growth factor; and other 
chemokines [243,246,247,249,258,262]. BM-MSCs may pro-
tect against infectious challenge either by direct effects on 
the pathogens or through indirect effects on the host [248]. 
BM-MSCs may reduce the burden of the pathogen either by 
inhibiting growth of the pathogen through soluble factors or 
by enhancing immune antimicrobial functions [248]. In the 
host, BM-MSCs may: attenuate proinϐlammatory cytokine 
and chemokine induction, reduce proiϐlammatory cell migra-
tion into sites of injury or infection, and induce immunomod-
ulatory soluble and cellular factors to preserve organ func-
tion [248]. Additionally, MSCs can stimulate B-cell antibody 
production as they express miRNA for IL-6 which is impor-
tant for B-cell differentiation and immunoglobulin secretion 
[263]. MSCs, particularly placenta-derived MSCs and fetal 
membrane-derived MSCs, are highly susceptible to herpes 
viruses including VZV [245,264]. 

Mesenchymal stem cells and blood brain barrier: 
Emerging strategies that can deliver therapeutic agents 
or cytotoxic genes to the brain across the BBB include: (1) 
nanoparticle carriers, (2) cell-based drug delivery via MSCs 
or neural stem cells (NSCs), and (3) focused ultrasound-
based drug and gene delivery [265]. Studies have shown 
that several types of stem cells including BM-MSCs and NSCs 
can cross the BBB and reach tumors localized in the brain 
such as glioblastoma multiforme as well as ischemic areas 
and injured sites in the brain and engraft there. Hence, MSCs 
can be used as means of cellular carriers or Trojan horses 
to deliver cytotoxic genes or therapeutic agents for brain 
tumors, and they can be used to exert their therapeutic and 
regenerative effects in the brain [266-270]. In cancer, MSCs 
are a double-edged sword. They can exert stimulatory effects 
on tumor development and they can have inhibitory effects 
on cancer cell growth and metastases [271]. MSCs have 
anticancer properties as they can be engineered or modiϐied 
to become carriers of suicide genes that can produce toxic 
products and subsequently target tumor cells and inhibit 
tumor expansion while keeping the surrounding healthy 
tissues intact [272,273]. Additional potential roles of MSCs 
in cancer therapeutics include: (1) MSCs can be employed as 
carriers of anti-angiogenesis factors that inhibit tumor growth 
and prevent metastases, (2) induction of cytokine gene 
expression in MSCs thus making tumor cells more exposed 
to the response of the host immune system, (3) antimitotic 
factors may become a rational target for MSC-based cancer 
engineering, (4) the use of exosomes as biological delivery 
vehicles for mRNA transfer as exosomes do not elicit acute 
immune rejection and do not have risk of tumor formation, 
and (5) targeting CSCs by engineered MSCs that can express 
TNF-related apoptosis inducing ligand [272,274]. 

Dendritic cells: DCs are BM-derived cells that arise 
from lympho-myeloid hematopoiesis and form an essential 
interface between the innate sensing of pathogens and the 
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activation of adaptive immunity [275,276]. DCs are potent 
antigen presenting cells that are critical in the initiation of 
successful primary antiviral immune responses through 
stimulation of immunologically naïve T-cells to control and/
or eliminate viral infections [276-280]. DCs are located in 
most tissues including the skin, blood, lymph and mucosal 
surfaces [276]. There are several classes or subsets of 
DCs. The 3 major subsets are: (1) plasmacytoid DC (pDC), 
(2) myeloid/conventional DC1 (cDC1), and (3) myeloid/
conventional DC2 (cDC2), while other subsets include: (1) 
Langerhans cells, (2) pre-DC, (3) monocyte derived DCs, 
and (4) non-classical monocytes [275,280]. The speciϐic 
subtypes of DCs are differentiated by an extended range of 
surface markers although it is difϐicult to dissociate cDC2 
from monocyte-derived DC under certain circumstances 
[275,280]. Each subset of DCs develops under the control 
of a speciϐic repertoire of transcription factors [275]. DC 
hematopoiesis is conserved between mammalian species 
and is distinct from monocyte development [275]. Functions 
of DCs include: inhibition and control of immune responses 
as well as bridging the innate and adaptive immune systems 
[275,280]. Immature DCs express the following: (1) MHC 
class I and MHC class II molecules, (2) CD 40 ligand, and 
(3) costimulatory molecules such as CD80 and CD86 [279]. 
Immature DCs have excellent antigen processing but poor 
antigen presenting capacity. When immature DCs are 
stimulated by CD 40 ligand, TNF-α, IFN-γ, and IL-6 they 
undergo a morphologic change and become mature DCs. 
Mature DCs express higher levels of certain markers such as 
CD 80 and CD 86. They also express CD 83 which increases 
their ability to stimulate T-cells. Mature DCs are excellent at 
both antigen processing and antigen presentation [279]. 

DCs are the Achilles heel of the immune system as they 
are essential for inducing antiviral immune responses [280-
282]. DCs use the following 3 pathways to present antigens 
to CD8 and CD4 T-cells: (1) infection of DCs with viruses 
leads to expression of viral proteins that are processed into 
8-10 amino acid peptides in the proteasome, (2) DCs can 
take up apoptotic virus-infected cells or viral proteins that 
are processed in endosomes, and (3) DCs can endocytose 
viral proteins or inactivated virus in vacuoles, process the 
proteins, load them on MHC class II molecules and then 
transport them to the cell surface for presentation to CD4 
T-cells [279]. VZV infects both DCs and T-cells and exploits 
both as Trojan horses [281]. VZV exploits DCs to disseminate 
in the human body, evade the antiviral immune responses 
and cause disease [276]. DCs are required for generation of 
VZV-speciϐic T-cells [281]. During primary infection: (1) VZV-
infected DCs trafϐic to the draining lymph nodes and tonsils 
where the virus is transferred to the T-cells, and (2) VZV 
infected T-cells subsequently spread infection throughout 
the body to give rise to the typical skin eruption [276,281]. 
VZV can productively infect immature DCs, impair their 
function, and inhibit their maturation [278]. VZV inhibits 

NF-κβ signaling pathway in human DCs following protein 
phosphorylation but before translocation of NF-κβ subunits 
into the nucleus. The E3 ubiquitin ligase domain of ORF 61 
is required for modulation of NF-κβ pathway [278]. VZV-
ORF 47 is critical for replication of VZV in human immature, 
but not mature, DCs [279]. Mature DCs are permissive for 
VZV infection and DC infection can lead to transmission of 
the virus to T-lymphocytes in preparation for subsequent 
dissemination [276,277]. VZV infection of mature DCs reduces 
their ability to function properly thus VZV has evolved an 
immune evasion strategy that would likely impair immune 
surveillance and enhance the chance of life-long persistence 
in the human population [277]. VZV infection of mature DCs 
results in: (1) down-regulation of functionally important 
immune molecules such as: MHC class I, CD 80, CD 86, and 
CD 83; and (2) signiϐicant reduction in T-cell stimulatory 
capacity [277]. The induction of VZV-speciϐic T-cell immunity 
is critical for host recovery from varicella [277]. Both MHC 
and class I-restricted CD8+ T-lymphocytes as well as class 
II-restricted CD4+ T-lymphocytes are sensitized to viral 
antigens during primary infection [276,277]. VZV has the 
capacity to interfere with the expression of MHC class I and 
MHC class II and this immunomodulatory mechanism plays 
an important role in the pathogenesis of VZV disease and 
persistence of the virus in the human host [276,277]. They 
also express CD 83 which increases their ability to stimulate 
T-cells [279,280]. Mature DCs are excellent at both antigen 
processing and antigen presentation [279]. 

Natural killer cells

NK cells develop from common progenitors and 
differentiate from HSCs in the BM but diverge into distinct 
subsets which differ in: cytokine production, cytotoxicity, 
homing and memory traits [283,284]. Sources of NK cells 
include: BM, peripheral blood, cryopreserved umbilical 
cord blood, human ESCs, iPSCs, and various cell lines such 
as NK-92 and KHYG-1 [285]. NK cells are large granular 
lymphocytes that are: CD3-, CD56+, CD16+, CD94+ and 
NKp46+ [285-287]. They can be classiϐied into: (1) naïve 
CD56 bright CD 16 dim cells, and (2) mature CD56 dim CD16 bright 
cells [285,286,288]. Human NK cells have the following 
distinguishing features: expression of speciϐic surface 
markers, intracellular signaling molecules and expression of 
transcription factors, tissue speciϐic imprinting, and foreign 
antigen exposure [285,286,288,289]. NK cells are the third 
population of lymphoid cells but they represent the ϐirst 
line of defense against infections and tumors [285,288-292]. 
They have been traditionally classiϐied as short-lived innate 
lymphocytes or part of the innate immune system because 
unlike T and B cells, NK cells do not express receptors that 
require gene rearrangements to generate receptor diversity 
and speciϐicity [290]. Recently, it has been shown that NK 
cells exhibit many of the features associated with adaptive 
immunity such as: (1) the expansion of pathogen speciϐic 
cells, (2) the generation of long-lasting memory cells that 
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persist after cognate antigen encounter, (3) the ability to 
mount an enhanced secondary recall response to rechallenge, 
and (4) having distinct gene regulatory functions by adaptive 
NK cells [290,293]. Cancer cells frequently produce platelet 
derived growth factor receptor (PDGFR)-β which through 
autocrine and paracrine PDGFR-β signaling promotes: tumor 
growth, cell proliferation, metastasis, stromal recruitment, 
angiogenesis, and epithelial-mesenchymal transition [294]. 

Natural killer cells in cancer: NK cells play a major role 
in the immune response to certain malignancies by several 
mechanisms that include: (1) directly by secretion of potent 
immune mediators such as targeted secretion of cytokines or 
cytotoxic granules to cause cytolysis of transformed cells, (2) 
indirectly by orchestrating anti-tumor immune responses to 
prevent metastatic spread by engagement of the activating 
receptor NK p46 on NK cells, (3) the human immunoreceptor 
NK p44 expressed on NK cells and the innate lymphoid 
cells recognize PDGF-DD produced by tumor cells and this 
plays a major part in the control of tumor growth by NK 
cells, and (4) NK cells recruit conventional type I DCs into 
the tumor microenvironment to promote immune control 
of tumors [290,291,294-297]. Thus, NK cells play key roles 
in innate and adaptive responses through unique NK cell 
activation mechanisms during early host defense against 
viruses and tumors by performing 2 major roles: contact 
dependent cytotoxicity and cytokine production for immune 
modulation [284,290,295]. Target cell apoptosis is primarily 
mediated by perforin and genzyme B. The regulation of the 
immune responses is mediated by secretion of cytokines 
such as: IFN-γ, TNF-α, IL-1, IL-3, and GM-CSF [284,287]. NK 
cells are attractive candidates for adoptive cellular therapy 
in: (1) cancer: HMs such as acute leukemia, and solid tumors, 
with either CAR-engineered NK cells or combining NK cells 
with CD-16 binding antibodies or immune engagers; and (2) 
allogeneic HSCT including haploidentical allografts to protect 
against disease relapse by enhancing graft versus leukemia 
(GVL) effect without causing GVHD [12,283,285,286,297-
300]. 

Natural killer cells and viral infections: NK cells 
play a major role in the immune response to certain viral 
infections by: (1) direct cytolysis or killing of virus-infected 
cells in order to rapidly control viral infection, and (2) 
secretion of potent immune mediators such as IFN-γ and 
other cytokines [287,290,301,302]. NK cells share features 
with long-lived adaptive immune cells and this can impact 
disease pathogenesis through inhibition of adaptive immune 
responses by virus-speciϐic T and B cells as NK cells are potent 
regulators of antiviral T and B cell responses [301]. NK cells 
can produce persistent memory in response to certain viral 
infections particularly those caused by CMV [293]. NK cells 
have multiple mechanisms to kill virus infected cells through 
the engagement of extracellular death receptors, and through 
exocytosis of cytotoxic granules [292]. Mediation of cytolysis 

occurs through: engagement of death receptors expressed 
on target cells, and expression by NK cells of multiple 
extracellular ligands including fas ligand and TNF related 
apoptosis-induced ligand ultimately resulting in apoptosis 
of the target cells [292]. VZV actively manipulates the NK 
cell phenotype through productive infection. NK cells have 
a potential role in VZV pathogenesis and they are implicated 
in controlling infections caused by VZV [303]. Decreased 
NK cell function is associated with: (1) several genetic or 
hereditary disorders, (2) several chronic disorders such as: 
chronic fatigue syndrome, depression, autoimmune diseases, 
metastatic cancer, and exposure to occupational chemicals, 
and (3) certain viral infections such as HIV [287]. Although 
NK cell deϐiciencies are rare, they predispose to infections by 
herpes viruses [292]. VZV infects NK cells and causes: (1) cell 
to cell interaction with VZV-infected epithelial cells during 
early encounter or entry, and (2) subsequent modulation of 
NK cell function and phenotype resulting in stimulation of 
chemokine receptors and CD57 expression and inhibition of 
the expression of CD56, CD 16 and FcVRIII [292]. 

T-lymphocytes: T-cell mediated immunity consists of 
CD4 and CD 8 effector and memory T cells [304]. VZV-spe-
ciϐic T-cells and T-cell mediated immunity are essential for 
controlling VZV infections [304,305]. Also, administration of 
varicella vaccine generates VZV-speciϐic humoral and cellular 
immune responses [304]. However, VZV-speciϐic T-cell medi-
ated immunity decreases with immunosuppression and ad-
vancing age [306,307]. Studies in older subjects have shown: 
(1) differentiation of memory T-cells is defective after VZV 
vaccination, (2) the numbers of circulating IFN-γ secreting 
VZV-speciϐic CD4+ T-cells are decreased, and (3) the number 
of foxp3+ regulatory T-cells and expression of the inhibitory 
receptor programmed cell death-1 on CD4+ T-cells are signif-
icantly increased in the skin [308,309]. Natural VZV infection 
and live-attenuated varicella vaccine elicit T-lymphocytes 
that recognize VZV glycoproteins (I-IV) and IE-62 protein 
[310]. Glycoproteins B and E are major targets of VZV-spe-
ciϐic CD4+ and CD8+ T-cell recognition occurring during VZV 
infection in recipients of HSCT. Thus, glycoproteins B and E 
may form a basis for a novel non-hazardous VZV subunit vac-
cine that is suitable for immunocompromised HSCT patients 
[311]. VZV-speciϐic T-cell immunity, which is essential to pre-
vent VZV reactivation, can recover efϐiciently in recipients of 
T-cell depleted stem cell allografts to levels equivalent to 
those encountered in healthy virus carriers [312]. CD4+ cyto-
toxic T-cells are important in primary host response to acute 
varicella [313]. Immunization with live attenuated varicella 
vaccine can induce VZV-speciϐic memory cytotoxic T-cell re-
sponses comparable to those occurring in individuals with 
normal or natural immunity [313]. 

HZ-DNA vaccines with IL-7 and IL-33 molecular adjuvants 
strongly elicit protective T-cell immunity [306]. The 
magnitude of VZV-speciϐic CD4+ T-cell response increases 
after VZV vaccination [314]. CD4+ T-cell responses to SVV 
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are more important than antibody or CD8+ T-cell responses 
in controlling primary SVV infection. Thus, eliciting robust 
CD4+ T-cell responses may enhance the efϐicacy of VZV 
vaccines [315]. Varicella vaccination is associated with 
increases in IE-62 peptide-speciϐic CD8+ T-cell responses 
[316]. However, IE-62 protein is required for the initiation 
of VZV replication [305]. Antiviral cytotoxic T-lymphocyte 
activity against targets expressing VZV proteins is mediated 
equally by T-lymphocytes of CD4+ and CD8+ phenotype 
[317]. Infection with VZV induces cellular immunity that 
protects against reinfection and reactivation of the virus from 
neuronal sites of latency [318]. Memory T-cell recognition of 
VZV proteins has been characterized using in vitro methods 
to assess activation of CD4+ and CD8+ T-cells and induction 
of cytokine and cytotoxic T-lymphocyte responses [318]. In 
recipients of HSCT: (1) recognition of protective VZV-speciϐic 
T-cell mediated immunity against VZV does not require 
disease development, and (2) monitoring of VZV-speciϐic cell-
mediated immunity can guide the initiation and cessation of 
antiviral prophylaxis [319]. 

Mononuclear cells: Infection of the immune cells by 
VZV results in attenuation of the antiviral mechanisms to 
control the infection and limit spread of the virus [320]. 
Several studies have shown that VZV productively infects 
human peripheral blood mononuclear cells (PBMNCs) and 
the infected PBMNCs then disseminate the virus to distal 
organs to produce clinical disease [320-324]. VZV induces 
an IFNmediated Th1 reaction in PBMNCs. Also, pDCs play 
an important role in IFN-α production during VZV infection 
through TLR9-dependent and-independent pathways [325]. 
Monocyte derived macrophages are also highly permissive to 
VZV infection [320]. However, growth of VZV in human adult 
monocytes is incomplete and restriction of VZV growth by 
monocytes may play a role in defense against VZV infection 
[326]. VZV-DNA can be detected by RT-PCR in human 
PBMNCs during viremia and within 1-23 days after onset of 
the skin lesions [323,324]. Several studies have shown that 
VZV-DNA can be detected by PCR in PBMNCs brieϐly during 
relapse in patients with multiple sclerosis and in patients 
with VZV infections experiencing PHN [327,329]. Also, VZV-
DNA can be detected by in situ hybridization in PBMNCs in 
patients with VZV infection for 2-56 days after appearance 
of the skin eruption [330]. It is well recognized that TLRs 
are key components of the host innate recognition system 
and that TLR2 plays a role in the inϐlammatory cytokine 
production by monocytes during VZV infection [324]. VZV 
speciϐically induces IL-6 in human monocytes via TLR2-
dependent activation of the NK-κβ signaling pathway. Unlike 
other herpes viruses, the cytokine response to VZV is species 
speciϐic [324]. 

VZV proteins, cell components and cellular processes

Open reading frames: Approximately 80 proteins 
have been described to be produced in association with 

VZV infections: (1) 74 ORFs, 3 of them (ORF 62/71; ORF 
63/70; ORF 64/69) are duplicated; (2) 3 glycoproteins: B, 
C and E; and (3) 3 IE proteins: IE 4, IE 62, and IE 63. Forty 
four of these ORF genes are essential for viral replication 
[46,48,101,311,331-333]. Additionally, VZV contains 5 
unique ORF genes (ORF 1, ORF 2, ORF 13, ORF 32, and ORF 
57) that are not present in HSV-1 and it lacks 15 ORF genes 
that are expressed by HSV-1 [48]. The most common ORFs 
are: ORF 1, ORF 2, ORF 4, ORF 10, ORF 13, ORF 21, ORF 23, 
ORF 29, ORF 32, ORF 47p, ORF 54, ORF 57, ORF 61, ORF 62, 
and ORF 63 [46,48,101,331,332]. One complete cycle of VZV 
replication that leads to a new generation of infectious VZV 
particles takes 9-12 hours [101]. Kinetic analysis of VZV 
replication cycle in individual ϐibroblasts has demonstrated 
the spatiotemporal expression of: (1) 6 VZV proteins [ORF61, 
ORF 62, ORF 63, ORF 29, ORF 23, and glycoprotein E]; (2) 
newly synthesized viral DNA; and (3) virion morphogenesis. 
However, IE 63 expression occurs at 4-6 hours which is later 
than that of IE 62 and ORF 61 [101]. Transcripts encoding 6 
VZV genes (ORF 66, ORF 4, ORF 21, ORF 29, ORF 62, and ORF 
63) have been detected in latently infected human as well as 
rodent ganglia as reported by several laboratories [334-336]. 
However, expression of the 2 latency-related VZV genes, ORF 
62 and ORF 63, is regulated epigenetically through chromatin 
structure [335]. 

ORF 63 is expressed in an IE protein. It is present in the 
virion and has critical role in establishment of latency as it is 
one of the most abundant viral RNAs expressed during latency 
[335,336]. ORF 63 gene product is a tegument phosphoprotein 
with some regulatory functions such as enhancement of IE 
62 transactivation of some VZV promoters [101]. Also, it 
is a prominent gene product in both productive and latent 
infection and may play a critical role in VZV pathogenesis by 
aiding neuron and keratinocyte survival [337]. ORF 61 and 
ORF 62 are expressed very early and this expression occurs 
less than one hour after VZV infection of human ϐibroblasts 
[101]. VZV encodes an IE protein termed ORF 61p which 
is a transcriptional activator of viral promoters [338]. ORF 
61p enhances infectivity of viral DNA. Intact ORF 61p RING 
ϐinger domain is necessary for E3 ubiquitin ligase activity 
and is required for autoubiquitination and regulation of 
protein stability [338]. ORF 21 is the ϐirst gene product 
expressed during latency [334]. Genome-wide mutagenesis 
has revealed that ORF 7 is a novel VZV skin-tropic factor 
which is essential for viral replication [339]. Application of 
enrichment protocols to targeted genome sequencing has 
revealed the unexpected deletion of a signiϐicant proportion 
of VZV-ORF 12 following propagation in culture human 
ϐibroblast cells [340]. ORF 25 gene product is an essential hub 
for protein interactions and is essential for VZV replication 
[341]. ORF 54 deletion mutant represents the ϐirst VZV 
encapsidation mutant that can serve as a platform for the 
isolation of portal mutants via recombination-mediated 
genetic engineering and can provide a strategy for more 
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studies on VZV portal structure and function [331]. VZV-ORF 
47 is critical for replication of the virus in immature, but not 
in mature, DCs and for spread of virus to other cells [279]. 
The protein coded by ORF 9, ORF 9p, is an essential tegument 
protein [332,342]. ORF 9p phosphorylation by ORF 47p is 
critical for the formation and egress of VZV viral particles. 
ORF 9p is essential for viral replication by binding to cellular 
adaptor protein complex 1 [342]. 

Glycoproteins: The lipid envelope of VZV contains 
numerous glycoproteins that are required for replication and 
pathogenesis [343]. VZV glycoprotein C activity facilitates 
the recruitment and subsequent infection of leukocytes, 
increases chemokine mediated leukocyte migration and 
hence enhances VZV systemic dissemination in humans 
[333]. Glycoproteins B and E are major targets of VZV-
speciϐic CD4+ and CD8+ T-cell reconstitution occurring 
during VZV infection or reactivation following allogeneic 
HSCT [311]. Glycoproteins B and E might form the basis 
for novel non-hazardous subunit vaccines suitable for 
immunocompromised hosts [311]. The cytoplasmic domain 
lysine cluster of VZV glycoprotein B is implicated in the 
regulation of glycoprotein B fusion, ultimately leading to 
attenuation of VZV infection if unmodulated, so this domain 
is critical for the regulation of VZV cell to cell fusion and 
VZV infection [343,344]. VZV glycoprotein M is important 
for efϐicient cell to cell virus spread but it is not essential for 
virus growth [345]. A site of vulnerability which has been 
identiϐied by structural studies of neutralizing antibodies is 
bound to the glycoprotein complex gHgL [346]. 

Promyelocytic leukemia protein: Recently, the 
following cellular proteins: promyelocytic leukemia protein 
(PML), hDaxx, and Sp100 have been identiϐied [100,347]. 
These cellular proteins form a subnuclear structure called 
nuclear domain 10 (ND10) or PML nuclear bodies as host 
restriction factors that counteract herpes viral infections 
by inhibiting viral replication at different stages [347]. The 
antiviral function of ND10 is antagonized by viral regulatory 
proteins, such as IE1, which induce either a modiϐication 
or disruption of ND10 [347]. PML is an essential regulator 
of somatic cell programming and stem cell pluripotency 
[348]. PML has diverse functions that regulate: response 
to DNA damage, apoptosis, senescence, and angiogenesis 
[349,350]. PML is a regulator of metabolic pathways in 
stem cell compartments including hematopoietic system 
and it has provided new strategies for controlling stem cell 
maintenance and differentiation [349]. For its action, PML 
recruits other proteins such as: Sp100, Daxx, small ubiquitin-
like modiϐier (SUMO)-1, CBP, and P53 [350]. PML nuclear 
bodies are matrix-associated domains that recruit a variety 
of unrelated proteins. PML-NBs are found in most cell lines 
and many tissues and are regulated by cellular stresses 
such as: DNA damage, viral infection, transformation, and 
oxidative stress [351]. The PML protein is a key organizer 
of large numbers of proteins that share the ability to be 

SUMOylated [351]. Human PML is located on chromosome 
15 and has 9 exons and ≥ 11 isoforms [352]. PML is an 
IFN-inducible protein that is involved in restricting VZV 
replication [352]. PML-isoform IV acts at the following 2 
stages that require PML IV SUMOylation: (1) it confers viral 
resistance directly in an IFN-independent manner, and (2) it 
speciϐically enhances IFN-β production ultimately protecting 
uninfected cells from ongoing viral infection [353]. IFNs are 
the ϐirst line of defense against viral infections [353]. More 
recently, there is a growing body of evidence supporting the 
impression that PML is a key regulator of cytokine signaling 
[354]. PML is involved in various cellular processes including: 
cell death, senescence and antiviral defense and it is able to 
interact with various partners either in the cytoplasm or in 
the nucleus [354]. 

Chaperons: Chaperons are a diverse group of molecular 
proteins that function during homeostasis and stress con-
ditions such as disease or infection in all living organisms 
[355]. Chaperons play critical roles in: (1) assisting folding 
and refolding of protein chains, (2) assisting protein trans-
port and translocation through membranes, (3) facilitating 
degradation of proteins, (4) involvement in host-pathogen 
interaction during infection leading to the development of in-
nate and adaptive immunity, and (5) involvement in protein 
quality control [355,356]. Currently, ELISA-based tests are 
used to measure the plasma levels of chaperons. However, 
these tests give information about the quantity or amount 
but not the function or activity of chaperons [355]. Chaper-
ons are large cylindrical complexes that provide a central 
compartment for a single protein chain to fold unimpaired by 
aggregation [357]. Protein folding, maintenance of proteome 
integrity and protein homeostasis or proteostasis clinically 
depend on a complex network of molecular chaperons. Addi-
tionally, folding of proteins occurs upon controlled release of 
newly synthesized proteins from these factors or after trans-
fer of downstream chaperons such as the chaperonins [357]. 

Molecular chaperons are required for the folding 
processes of many proteins [358]. The core chaperone 
machinery consists of chaperonins and heat shock proteins. 
The chaperon machinery is maintained from prokaryotes to 
eukaryotes although the chaperon network is expanded in 
eukaryotes [358]. Proteins with RNA chaperon activity have 
diverse structures and functions and they play important 
roles in cellular mechanisms [359]. Chaperon rings play a vital 
role in the opposing ATP-mediated processes of folding and 
degradation of many cellular proteins through incompletely 
understood mechanisms [360]. The cell protein BAG3, a host 
chaperon, is speciϐically required for efϐicient replication of 
VZV and not HSV [361]. Alteration of host chaperon activity 
provides a novel means of regulating viral replication. VZV-
ORF29p, a single stranded DNA binding protein, is one 
of the VZV-latency associated proteins [361]. Activating 
transcription factor 3 is a host factor that plays a role in 
maintaining latent HSV infection in the sensory neurons of 
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murine trigeminal ganglia [362]. Virus-induced chaperone-
enriched domains are nuclear protein quality control centers 
that are produced during early HSV-1 infection and are 
mediated by the virus to promote productive infection [356]. 
VZV glycoprotein (gL) is a simpler form of gL chaperone 
protein than EBV-gL glycoprotein [363]. Targeting viral 
enzymes, proteins and chaperones may become a new 
therapeutic modality for treating infections caused by drug 
resistant herpes viruses [364,365]. 

SUMO proteins and SUMOylation: Viruses alter speciϐic 
host cell targets, through various mechanisms, to counteract 
host defenses aimed at eliminating infectivity and viral 
propagation [366-368]. Post-translational modiϐication 
(PTM) of proteins is important to numerous cellular events 
thus allowing cells to respond to both internal as well as 
external stimuli [367]. The most studied protein modiϐications 
include: ubiquitination, phosphorylation, acetylation, 
methylation, and glycosylation [367]. PTMs contribute to 
signaling pathways such as: gene regulation, epigenetics, 
differentiation, protein degradation, and tumorigenesis 
[369]. SUMOylation was ϐirst described in the year 1996, 
then in 1997 a new type of modifying protein (SUMO) was 
identiϐied and since that time 4 SUMO isoforms; SUMO-1, 
SUMO-2, SUMO-3, and SUMO-4; have been characterized 
in humans [366368]. SUMO proteins are essential for 
the normal function of all eukaryotic cells [370,371]. The 
SUMOylation process begins with the transcription and 
translation of the SUMO genes to produce the SUMO pro-
peptide [367]. SUMOylation is a highly conserved and 
reversible PTM that is manipulated by viruses in order to 
modulate: anti-viral responses, viral replication and viral 
pathogenesis [366-370]. SUMOylation is a major regulator of 
protein function that plays an important role in a wide range 
of cellular processes [369,370]. SUMOylation is carried out 
by a cascade of several enzymatic steps where SUMOs are 
implicated in the regulation of diverse cellular processes 
particularly nuclear events [367,372]. Thus, SUMOylation 
is an important mechanism regulating the activities of 
various proteins involved in cellular processes such as: DNA 
replication and repair, chromosome packing and dynamics, 
genome integrity, nuclear transport, signal transduction, 
and cell proliferation [373]. SUMO-speciϐic proteases are 
required for the maturation of SUMO precursors and to 
reverse a wide range of cellular processes [367,369]. There 
are 4 SUMO paralogues and an increasing number of proteins 
are being identiϐied as SUMO substrates [367,370]. SUMO 
Ubc9 enzyme represents a leading target for viral proteins 
and an attractive biomarker in the treatment of most viral-
induced human pathologies [366]. SUMOylation controls the 
function of several proteins and biological processes [368]. 
SUMOylation, which has a central regulatory role in PTM, is 
widely exploited by viruses [368]. A number of viral proteins 
either modify or become modiϐied by the SUMOylation 
system in order to create a cellular environment that favors 

their survival and propagation and prevents host antiviral 
responses [368]. 

ORF 61p of VZV is important in the infectivity of the viral 
DNA. ORF 61p appears to target substrates for potential 
degradation in a SUMO-independent manner. It has much 
stronger afϐinity for SUMO-1 than SUMO-2 and SUMO-
3 [368,369,371]. Additionally, it uses substrate binding 
sites other than SIMs to recognize some of its substrates. 
Suppression of nuclear factor kappa β (NF-κβ) activation 
by TNF-α requires a functional RING domain of ORF 61p 
but not it’s SIMs [368,369,371]. VZV-ORF 29 gene encodes a 
single-stranded DNA binding protein that is predominantly 
nuclear during lytic infection but appears to be restricted to 
the cytoplasm of latently infected neurons [374]. ORF 29p 
can be ubiquitinated and SUMOylated but these processes 
implicate the proteasome as one of the determinants of 
the protein’s cell type-speciϐic localization [374]. Tripartite 
moϐit (TRIM) proteins have been implicated in multiple 
cellular functions including antiviral activity. The antiviral 
activity of TRIMs relies mainly on their function as E3-
ubiquitin ligases [371,375]. Several TRIM family members 
mediate innate immune cell signal transduction and 
subsequent cytokine induction. E3-ubiquitin ligases can 
recognize SUMOylated proteins and link SUMO modiϐication 
to the ubiquitin/proteasome system [371,375]. Advanced 
investigations of ubiquitiylation and SUMOylation during 
virus-host interaction have shown that human viruses have 
evolved a large arsenal of strategies to exploit speciϐic PTM 
processes [369]. Identiϐication and knowledge of virus-
mediated PTM manipulation by viral analogs inϐiltrating 
ubiquitin/SUMO pathways will provide valuable information 
for the development of future antiviral drugs and novel 
immunotherapies [366,367,369]. So, targeting SUMOs could 
represent a new therapeutic strategy against viral infections 
[376]. 

MicroRNAs: Micro-RNAs (miRNAs) were ϐirst discovered 
by Ambros and colleagues in 1993 [377]. miRNAs have 
several roles or functions that include: (1) regulation or 
modulation of gene expression; (2) downregulation of target 
protein expression in cells; (3) regulation and maintenance 
of numerous cellular physiological functions or processes 
such as immune function, apoptosis, and tumor genesis; (4) 
regulation of interaction between hosts and viruses; and (5) 
inhibition of viral replication [377-380]. VZV encodes several 
miRNAs or small non-coding RNAs that regulate VZV infection 
in host cells [379]. Studies, using quantitative RT-PCR, have 
shown several circulating miRNAs in patients with VZV 
infection including: miR-197; miR-629; miR-363; miR-132; 
miR-122 as well as miR-1906; miR-571; miR1276; miR-1303; 
miR-943; and miR-661 [378,381]. Hence, circulating miRNAs 
can be potentially used as biomarkers of active or latent VZV 
infection [378,381]. RNA sequencing analysis has shown 
that VZV infection has profound effect on differentiating 
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keratinocytes thus promoting blistering and desquamation 
of the skin through upregulation of kallikreins and serine 
proteases and alteration of epidermal gene expression [382]. 
Regulation of gene transcription in VZV requires coordinated 
binding of multiple host and virus proteins onto speciϐic 
regions of the virus genome [383]. Hyperphosphorylation 
of serine 5 of the c terminal domain of phosphorylated RNA 
polymerase II (RNAP) along with the lengths of VZV genes 
is independent of miRNA abundance as RNAP is associated 
with human and virus transcriptional units through different 
mechanisms [383]. 

Extracellular vesicles and exosomes

Extracellular vesicles: Extracellular vesicles (ECVs) are 
nano-sized, cell-derived particles or membrane surrounded 
structures that are released by most cell types [256,384-386]. 
ECVs are potent vehicles of intercellular communication 
to transmit biological signals between cells and they are 
characterized by a speciϐic set of proteins, lipids and nucleic 
acids [384,386]. The 4 main types of ECVs are: exosomes 
which are the most widely studied type of ECVs, microvesicles, 
apoptotic bodies, and oncosomes [256,385-387]. 
Classiϐication of ECVs is based on their bio biophysiological 
properties including: size, cellular origin, molecular cargo, 
and biogenesis. ECVs can be isolated from various biological 
ϐluids including: blood, urine, cerebrospinal ϐluid, amniotic 
ϐluid, seminal ϐluid, and breast milk. Interestingly, they were 
initially considered as mostly cellular debris [385,386]. 
ECVs are the key mediators of intercellular communication 
by: reprogramming target cells, and regulating numerous 
physiological processes and pathological conditions such 
as: cancer, inϐlammation and immune response, and viral 
infections [256,385,386]. During viral infection, ECVs have 2 
key biological activities: (1) transport of viral genomes into 
target cells, and (2) intervention in cell physiology to facilitate 
viral infection [385]. MSC-derived ECVs may provide a new 
therapeutic option in cell transplantation or gene therapy 
for different diseases particularly HMs [256,384]. Also, they 
may have therapeutic effects in immune regulation, tumor 
inhibition, and regenerative medicine [256]. 

Exosomes: Exosomes are ECVs that originate as 
intraluminal vesicles during the process of multivesicular 
body formation [388]. The contents of exosomes are variable 
and depend on the cells from which they originate and 
they include: proteins, miRNAs, lipids, and carbohydrates 
[389]. Exosomes were ϐirst described in the early 1980s 
and in the late 1980s the word “exosomes” was coined 
by Rose Johnstone [388]. Exosomes mediate intercellular 
communication through functional or biologically active 
proteins, lipids, and RNAs [388]. Several studies have 
demonstrated that exosomes are implicated in: (1) normal 
physiological processes such as modulation of the immune 
system, metabolism, and neural development and (2) 
progression of several pathologies such as: cancer, infection 
and neurodegeneration [386]. 

Exosomes released from virus-infected cells contain 
various viral and host cellular factors that can modify the 
host cell responses [388]. They allow the host to produce 
effective immunity against pathogens by activating antiviral 
mechanisms and by transporting antiviral factors between 
cells. Therefore, exosomes are crucial components in the 
pathogenesis of viral infections [388]. Viruses including 
herpes viruses can manipulate exosomal pathways 
[389]. VZV could utilize the alterations in host exosomes 
to: enhance spread of the virus, evade host immune 
surveillance, and elicit pathological effects within the host 
[390]. Exosomes are emerging as critical mediators of 
viral infection-associated intercellular communication and 
microenvironment alterations [387]. Exosomes represent a 
source of viral infection that can be used as: (1) biomarker 
of disease and (2) target for therapy in order to control or 
even eradicate viral infection [387,389]. They can help to 
enhance immune responses of the host against pathogens by 
activating antiviral mechanisms. Thus, exosomes can be used 
as therapeutic agents to modulate immune responses [388]. 
Exosomes are prone to viral exploitation. For example, herpes 
viruses can hijack host exosomes for viral pathogenesis, that 
is, herpes viruses can hijack exosomal pathways to ensure 
their survival and persistence [97,387,388,391]. Herpes 
viruses utilize ECVs including exosomes for the complex 
interplay between infected host and recipient cells. These 
viruses incorporate genome expression products and direct 
cellular products into exosomal cargoes [387]. 

Role of cytokines in VZV infections

Cytokines are low molecular weight extracellular 
polypeptides or glycoproteins that are synthetized by 
different immune cells such as T-cells, neutrophils and 
macrophages in response to infection, inϐlammation or 
trauma [392]. There are different types of cytokines and 
these types include: chemokines, lymphokines, IFNs, ILs, and 
TNF [392]. Cytokines are important mediators of immune 
response and they are responsible for promotion and 
regulation of various immune responses [392,393]. Actions 
of cytokines can be categorized into: (1) autocrine: exhibited 
in the sites where cytokines are produced, (2) paracrine: 
shown in nearby cells, and (3) endocrine: exhibited in distant 
cells [392]. Cytokines play an essential role in the expression 
of cell mediated immunity as they facilitate cellular behavior 
in the development of an immune response [393]. During 
infection, herpes viruses produce various cytokines and 
chemokine receptors from genes in the viral genome [394]. 
They also regulate several host cellular genes to direct 
cellular chemotaxis for the beneϐit of the invading viruses. 
Consequently, viral-induced chemotaxis contributes to the 
epidemiology and persistence of herpes viruses [394]. The 
high prevalence of herpes viruses in humans is principally 
due to their ability to establish life-long latency and their 
exceptional capacity to modulate the host immune responses 
[395]. Functions of the chemokine components of herpes 
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viruses include: attraction of target cells, blockade of 
leukocyte migration, and modiϐication of gene expression 
and cell entry by the viruses [395]. 

Studies have shown that: (1) the transcription factor NF-
κβ is a key factor in inducing the expression of IFN and other 
proinϐlammatory cytokines that are involved in antiviral 
response, and (2) effector proteins are involved in: inhibition 
of protein synthesis, degradation of RNA, modulation of 
viral genome, activation of the innate immune system, and 
development of the adaptive immune response [396]. Human 
herpes viruses deploy viral chemokines and viral chemokine 
receptors as well as chemokines and chemokine receptors 
pirated from the host to exploit and evade the host immune 
response [395]. Cells respond to a variety of cytokines and 
chemokines that allow them to migrate in different body 
locations depending on where they are required [394]. VZV 
could utilize glycoproteins as chemo-attractants to induce 
migration of PMNLs [394]. On the ϐirst infection with VZV, 
CD4 and CD8 T-cells are induced and this is followed up 
by generation of VZV IgM, IgG, and IgA antibodies, while 
memory immunity to VZV is characterized by persistence 
of: IgA antibodies, CD4 helper T-cells and cytotoxic T-cells 
within CD4/CD8 subpopulation [397,398]. Several studies 
have shown that the following cytokines are expressed or 
elevated in the serum following VZV infections: Il-6, IL-10, 
IL-8, IL-17, IL-4, IL-12, IL-21, IL23, and IL-1β in addition to 
IFN-α and IFN-γ [393,324,397-405]. Expression of IFN-α and 
IFN-β is upregulated in the early phases of VZV infection then 
IFN expression decreases signiϐicantly during the late phases 
of VZV infection [398,401]. In patients with PHN, which is a 
common complication of HZ infection, the serum levels of 
autoantibodies against: IFN-α, IFN-γ, GM-CSF, and IL-6 have 
been found to be markedly elevated [406]. IL-6 in particular 
may be associated with the development of PHN in the acute 
phase of HZ infection [407]. 

Additionally, IL-6 and IFN-γ may be used as early 
serum markers for the development of complications of 
VZV disease such as skin infection [408]. VZV infection of 
primary spinal cord astrocytes causing myelopathy and VZV 
infection of primary hippocampal astrocytes that causes 
encephalopathy have produced distinctive alterations and 
patterns of proinϐlammatory cytokine suppression that 
could contribute to the ineffective viral clearance in both 
VZV associated myelopathy and encephalopathy [409]. 
Also, patients with encephalopathy have shown elevated 
cerebrospinal ϐluid (CSF) levels of the following matrix 
metalloproteases (MMPs): MMP-3, MMP-8 and MMP-12 and 
the pronounced increase in CSF levels of MMPs correlated 
with severity of the disease while patients with meningitis 
have shown signiϐicant increase in CSF levels of MMP-9 
[410]. In patients with VZV associated vasculopathy and 
giant cell arteritis (GCA), the following cytokine alterations 
have been reported: (1) upregulation of IL-6 which is the 

major cytokine involved in GCA, (2) upregulation of IL-6 and 
VEGF-A that can be utilized as marker of disease progression, 
while (3) programmed death-ligand 1 is downregulated in 
order to promote persistence of inϐlammation [400]. ARN 
and posterior uveitis represent severe intraocular infections 
that may be complicated by: retinal detachment, occlusive 
vasculitis, and loss of vision. VZV infection is the commonest 
cause of both of these eye inϐlammatory disorders [411,412]. 
Studies have shown that the following cytokines are 
signiϐicantly elevated during ARN: IL-6, IL-8, IL-10, IL-18, IL-
15, MIF, MCP-1, Eotoxin, IP10, sICAM-1, and sVCAM-1 and 
their levels correlate with disease activity, while low levels of 
the following cytokines have been encountered: IL-2, IL-4, IL-
13, and IFN-α [411,412]. IFN-γ release assay may be useful as 
a surrogate test for measuring VZV-speciϐic immunity [413]. 
Also, characterization of cytokine, chemokine and growth 
factor responses during different stages of VZV infection may 
facilitate the development of effective immunotherapeutic as 
well as vaccine strategies [414]. 

Signaling pathways

Signaling pathways involved in VZV infections: 
Several signaling pathways are involved or activated in 
VZV infections and these include: (1) Janus kinase/signal 
transducer and activation of transcription (JAK/STAT) 
pathway; (2) c-Jun N-terminal Kinase (JNK) pathway; (3) 
extracellular signal-regulated kinase (ERK/MEK) pathway; 
(4) phosphatidylinositol 3-kinase (PI3K/Akt) pathway; 
(5) NK-κβ pathway; (6) mitogen-activated protein kinase 
(MAPK) pathway; (7) Wnt-Wingless pathway; and (8) cyclic-
AMP response element binding protein (CREB) pathway. 
However, JAK/STAT signaling is the most studied pathway 
[278,415-422]. 

IFNs and JAK/STAT pathway: The induction of the JAK/
STAT pathway by IFNs leads to the upregulation of hundreds 
of IFN-stimulated genes, many of which have the ability to 
rapidly kill viruses within infected cells [423]. During their 
evolution, viruses have acquired an extraordinary range 
of strategies to counteract the host immune responses by 
targeting the JAK/STAT signaling pathway in particular. 
Thus, almost all viruses have evolved strategies to combat 
the effects of type 1 and type 3 IFNs by antagonizing the IFN 
signaling pathways [423]. STAT 3 regulates several biological 
functions including: cell growth and proliferation, cellular 
differentiation, cell survival and apoptosis, angiogenesis, 
chemotaxis and cell adhesion, and immune response. STAT3 
plays a key role in regulating immune and inϐlammatory 
responses of the host and the pathogenesis of many cancers 
[424-426]. IFNs are a multifunctional family of cytokines that 
play a critical role as ϐirst line defense against viral infections 
[423]. Type I IFNs (α/β) are induced in virus infected cells by 
engagement of viral molecules particularly nucleic acids with 
pattern recognition receptors to induce an innate immune 
response [423,427]. IFN-γ (type II IFN) is mainly produced 



The benefi cial effects of varicella zoster virus

Published: July 15, 2019 034

by NK cells and T-cells. VZV downregulates STAT1 and JAK2 
protein levels in virus-infected cells [428]. Studies have 
shown that: (1) SVV targets 3 proteins in the IFN-γ signal 
transduction pathway to escape the antiviral effects of IFN-γ, 
and (2) both SVV and VZV encode multiple gene products that 
tightly control IFN-induced antiviral responses [415,428]. 

However, ORF-63 prevents induction of IFN stimulated 
genes both directly and indirectly [415]. Several studies 
have reported differential regulation of STAT3 in a range 
of viral infections. STAT3 directs apparently contradictory 
responses to viral infections as it exhibits proviral as well 
as antiviral roles [424]. STAT3 activation and upregulation 
of survivin is a common and an important mechanism in the 
pathogenesis of lytic and tumorigenic herpes viruses. Also, 
STAT3 activation is critical for the life cycle of VZV because 
VZV skin infection is necessary for viral transmission and 
persistence in humans [426]. STAT3 is a key regulator in 
inϐlammation and tissue regeneration triggered by almost 
every pathogenic infection [425]. Viruses must deal with 
the STAT3 activity by either curtailing it or employing it 
[425]. Survivin, which is abundant in cancers and tissues 
that contain proliferating cells, mediates a necessary virus-
enhancing effect of STAT3 activation on VZV [426]. The 
major IE-62 protein of VZV is delivered to the newly infected 
cell nuclei where it initiates VZV replication [429]. IE-62 
protein is the predominant VZ virion tegument protein 
[427]. It activates the expression of all kinetic classes of VZV 
genes [427,429]. IFN-γ blocks VZV replication by inhibiting 
IE-62 function in a cell line-dependent manner [429]. IFN-α 
exerts multiple inhibitory activities against VZV infections 
as it inhibits VZV replication by several mechanisms [427]. 
Targeting IE-62 protein may offer a novel approach to the 
development of antiviral agents against VZV infections [427]. 
Identiϐication of factors, encoded by viruses, which modulate 
the JAK/STAT pathway have opened new opportunities to 
develop new vaccines as well as antiviral agents [417]. 

Other signaling pathways in VZV infection 

Herpes viruses can manipulate and control the Wnt/β-
catenin signaling pathway to: promote viral replication, evade 
host immune recognition, and maintain latency. However, 
the involvement of this pathway during VZV infection has 
been under investigated [430]. VZV optimizes the conditions 
of its replication by: upregulation of proviral systems, and 
suppression of potentially antiviral-acting systems. For 
example, the ERK/MEK signaling pathway is inϐluenced by 
VZV [416]. The PI3K/Akt signaling pathway has an essential 
role in successful replication of VZV [418]. JNK pathway 
plays an important role in lytic infection and reactivation of 
VZV in physiologically relevant cell types and may provide 
an attractive target of antiviral therapy. Also, MAPKs play 
a role in VZV infection of non-neural cells with distinct 
consequences for infectivity in different cell types [417]. ORF-
61 has an important role in the regulation of MAPK signaling 
pathway and in VZV gene expression [422]. CREB is a factor 
involved in the regulation of several cellular processes. It is 
activated upon infection of T-cells with VZV. CREB activation 
is important for VZV skin infection and may be targeted by 
new antiviral drugs [419]. E3 ubiquitin ligase domain of ORF-
61 is required to modulate NF-κβ signaling pathway. VZV has 
been found to inhibit the NF-κβ signaling pathway in human 
DCs [278]. Apparently, a large number of different elements 
including BM stromal cells, immune cells, cellular proteins, 
extracellular vesicles, cytokines, chemokines, ligands, as 
well as signaling pathways are involved not only in the 
pathogenesis, but also in the consequences of VZV infections. 
The various elements that are implicated in VZV infections 
are illustrated in ϐigure 3. [101,204-207,245,248,268,272-
274,276,292,304-307,310-313,320-324,334,341,343-
346,349,350,361,368-371,378,381,387,397-405,415-422]. 

Conclusions and Future Directions
As clearly shown in the review, VZV differs from other 

herpes viruses and has the following peculiar features: having 
the smallest genome; losing almost all the genes that are not 
essential for its survival; being highly cell-associated; having 
no inhibitors of autophagy; being an exclusively human 
pathogen; having a species-speciϐic cytokine proϐile; having 
inverse relationship with glioma; association with GVHD in 
recipients with HSCT; in addition to having BM stimulatory 
effects as well as several antitumor actions in patients with 
BM failure and HMs. The reported beneϐicial effects of VZV 
are rather outstanding and they have shown clear evidence 
of stimulation of BM activity and superior survival outcome 
in immune compromised patients infected with VZV. This 
should encourage scientists and researchers to give this 
potentially useful virus the attention it deserves. The positive 
effects of VZV on BM activity and on diseases such as BM 
failure syndromes, HMs and solid tumors through direct 
and indirect immunological mechanisms merit thorough 

Figure 3: The various elements involved in the pathogenesis and conse-
quences of VZV infections.
VZV: Varicella Zoster Virus, ORFs: Open Reading Frames, PML: Promyelo-
cytic Leukemia Protein, SUMOs: Small Ubiquitin-Like Modifi er, MSCs: Mes-
enchymal Stem Cells, DCs: Dendritic Cells, NKCs: Natural Killer Cells, MNCs: 
Mononuclear Cells, miRNAs: micro-RNAs.
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investigations. The virus itself or constituents obtained 
from the serum of patients infected with VZV may ultimately 
become extremely valuable therapeutic modalities in the 
management of patients with various BM failure, HMs and 
solid tumors. Explanation of the stimulatory effect exerted 
on the 3 cell lines in the BM that is subsequently translated 
into increases in all blood counts as well as the antitumor 
effects of the virus can be explained by one or more of the 
mechanisms outlined or may be due to a new mechanism yet 
to be elucidated. 
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